This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241131 #23 Jun 21 2025 15:14:57 %S A241131 0,1,1,2,3,4,7,9,13,18,26,32,47,60,79,104,137,173,227,285,365,461,583, %T A241131 724,912,1129,1403,1729,2137,2611,3211,3906,4765,5777,7010,8450,10213, %U A241131 12263,14738,17637,21113,25158,30008,35638,42333,50130,59346,70035,82663 %N A241131 Number of partitions p of n such that (maximal multiplicity over the parts of p) = number of 1s in p. %H A241131 Vaclav Kotesovec, <a href="/A241131/b241131.txt">Table of n, a(n) for n = 0..9500</a> (terms 0..300 from John Tyler Rascoe, terms 301..2000 from Alois P. Heinz) %F A241131 G.f.: Sum_{i>0} x^i * Product_{j>1} ((1 - x^(j*(i+1)))/(1 - x^j)). - _John Tyler Rascoe_, Mar 12 2024 %F A241131 a(n) ~ c * exp(Pi*sqrt(2*n/3)) / n, where c = 0.07449179... - _Vaclav Kotesovec_, Jun 21 2025 %e A241131 a(6) counts these 7 partitions: 51, 411, 321, 3111, 2211, 21111, 111111. %p A241131 b:= proc(n,i,m) option remember; `if`(i=1, `if`(n>=m, 1, 0), %p A241131 add(b(n-i*j, i-1, max(j, m)), j=0..n/i)) %p A241131 end: %p A241131 a:= n-> `if`(n=0, 0, b(n$2, 0)): %p A241131 seq(a(n), n=0..48); # _Alois P. Heinz_, Mar 15 2024 %t A241131 z = 30; m[p_] := Max[Map[Length, Split[p]]]; Table[Count[IntegerPartitions[n], p_ /; m[p] == Count[p, 1]], {n, 0, z}] %o A241131 (PARI) %o A241131 A_x(N)={my(x='x+O('x^N),g=sum(i=1, N, x^i*prod(j=2, N, (1-x^(j*(i+1)))/(1-x^j)))); %o A241131 concat([0],Vec(g))} %o A241131 A_x(50) \\ _John Tyler Rascoe_, Mar 12 2024 %Y A241131 Cf. A241090, A241132. %K A241131 nonn,easy %O A241131 0,4 %A A241131 _Clark Kimberling_, Apr 24 2014