cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241139 Number of nonprimes in factorization of n! over distinct terms of A050376.

This page as a plain text file.
%I A241139 #21 Sep 17 2019 20:02:00
%S A241139 0,0,1,1,2,2,3,3,3,3,4,4,5,6,7,7,4,4,5,5,6,6,8,9,10,10,9,9,11,11,12,
%T A241139 12,10,9,8,8,9,10,11,11,12,12,11,12,14,14,16,15,15,15,13,13,14,14,14,
%U A241139 14,16,16,16,16,17,19,21,21,18,18,19,16,14,14,16,16,17
%N A241139 Number of nonprimes in factorization of n! over distinct terms of A050376.
%D A241139 V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].
%H A241139 Amiram Eldar, <a href="/A241139/b241139.txt">Table of n, a(n) for n = 2..1000</a>
%H A241139 S. Litsyn and V. S. Shevelev, <a href="http://www.emis.de/journals/INTEGERS/papers/h33/h33.Abstract.html">On factorization of integers with restrictions on the exponent</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.
%F A241139 a(n) = A177329(n) - A055460(n).
%e A241139 Factorization of 4! over distinct terms of A050376 is 4! = 2*3*4. This factorization contains only one A050376-nonprime. So a(4)=1.
%t A241139 b[n_] := 2^(-1 + Position[Reverse@IntegerDigits[n, 2], _?(# == 1 &)]) // Flatten; a[n_] := Module[{np = PrimePi[n]}, v = Table[0, {np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j, 2, n}], {k, 1, np}]; Length[Select[(b /@ v) // Flatten, # > 1 &]]]; Array[a, 73, 2]  (* _Amiram Eldar_, Sep 17 2019 *)
%o A241139 (PARI) a(n)={my(f=factor(n!)[,2]); sum(i=1, #f~, hammingweight(f[i]>>1))} \\ _Andrew Howroyd_, Sep 17 2019
%Y A241139 Cf. A177329, A177333, A177334, A240537, A240606, A240619, A240620, A240668, A240669, A240670, A240672, A240695, A240751, A240755, A240764, A240905, A240906, A241123, A241124.
%K A241139 nonn
%O A241139 2,5
%A A241139 _Vladimir Shevelev_, Apr 16 2014
%E A241139 More terms from _Peter J. C. Moses_, Apr 17 2014