This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241140 #16 Feb 16 2025 08:33:21 %S A241140 1,0,5,7,3,2,8,1,4,1,0,0,1,8,7,6,9,2,4,9,5,2,6,5,7,0,9,4,1,8,4,2,8,6, %T A241140 6,4,3,1,3,1,7,9,1,2,5,2,6,2,8,4,3,3,8,2,2,0,9,5,1,4,6,0,7,7,1,5,3,3, %U A241140 9,2,3,8,4,4,0,6,2,1,4,0,4,4,6,8,3,0,2,0,1,6,7,3,0,1,6,6,3,3,2,3,3 %N A241140 Decimal expansion of an infinite product involving the ratio of n! to its Stirling approximation. %C A241140 The same product where the ratio is replaced by sqrt(2*Pi) evaluates as (2*Pi)^(1/4) = 1.58323... %D A241140 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin Constant, p. 135. %H A241140 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 20. %H A241140 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/Glaisher-KinkelinConstant.html">Glaisher-Kinkelin Constant</a> %F A241140 Product_{n>=1} (n! / ((sqrt(2*Pi*n)*n^n)/e^n))^((-1)^(n-1)) = A^3/(2^(7/12)*Pi^(1/4)), where A is the Glaisher-Kinkelin constant. %e A241140 1.057328141001876924952657094184286643131791252628433822095146... %t A241140 RealDigits[Glaisher^3/(2^(7/12)*Pi^(1/4)), 10, 101] // First %Y A241140 Cf. A019727, A074962. %K A241140 nonn,cons,easy %O A241140 1,3 %A A241140 _Jean-François Alcover_, Aug 08 2014