A241150 Irregular triangle read by rows T(n,k) = number of partitions of degree k in the partition graph G(n), for n >= 2; G(n) is defined in Comments.
2, 2, 1, 3, 1, 1, 2, 3, 2, 4, 2, 4, 1, 2, 6, 5, 1, 1, 4, 5, 8, 3, 2, 3, 8, 10, 4, 5, 4, 10, 13, 5, 9, 1, 2, 13, 17, 8, 14, 1, 1, 6, 12, 22, 10, 22, 3, 2, 2, 19, 27, 11, 32, 5, 5, 4, 21, 33, 15, 43, 9, 10, 4, 20, 44, 21, 57, 10, 19, 1, 5, 28, 50, 20, 77, 20
Offset: 1
Examples
The first 12 rows: 2 2 ... 1 3 ... 1 ... 1 2 ... 3 ... 2 4 ... 2 ... 4 ... 1 2 ... 6 ... 5 ... 1 ... 1 4 ... 5 ... 8 ... 3 ... 2 3 ... 8 ... 10 .. 4 ... 5 4 ... 10 .. 13 .. 5 ... 9 ... 1 2 ... 13 .. 17 .. 8 ... 14 .. 1 ... 1 6 ... 12 .. 22 .. 10 .. 22 .. 3 ... 2 2 ... 19 .. 27 .. 11 .. 32 .. 5 ... 5 The graph can be represented by these transformations: 6 -> 51, 51 -> 411, 42 -> 321, 42 -> 411, 411 -> 3111, 33 -> 321, 321 -> 2211, 321 -> 3111, 3111 -> 21111, 222 -> 2211, 2211 -> 21111, 21111 -> 111111. These 4 partitions p have degree 1 (i.e., number of arrows to or from p): 6, 33, 222, 111111; these 2 have degree 2: 51, 42; these 4 have degree 3: 411, 3111, 2211, 21111; the remaining partition, 321, has degree 4. So, row 6 of the array is 4 2 4 1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]]; unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]]; Column[m] (* A241150 as an array *) Flatten[m] (* A241150 as a sequence *) Table[Length[m[[n]]], {n, 1, z}] (* A241151 *) Table[Max[m[[n]]], {n, 1, z}] (* A241152 *) Table[Last[m[[n]]], {n, 1, z}] (* A241153 *) (* Next, show the graph G(k) *) k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* Peter J. C. Moses, Apr 15 2014 *)
Comments