cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241151 Number of distinct degrees in the partition graph G(n) defined at A241150.

This page as a plain text file.
%I A241151 #13 Jul 14 2022 17:25:16
%S A241151 1,2,3,3,4,5,5,5,6,7,7,7,7,8,9,9,9,9,9,10,11,11,11,11,11,11,12,13,13,
%T A241151 13,13,13,13,13,14,15,15,15,15,15,15,15,15,16,17,17,17,17,17,17,17,17,
%U A241151 17,18,19,19,19,19,19
%N A241151 Number of distinct degrees in the partition graph G(n) defined at A241150.
%C A241151 a(n) = number of numbers in row n of the array at A241150, counting the top row as row 2.
%C A241151 Conjecture: partial sums of A097806. - _Sean A. Irvine_, Jul 14 2022
%e A241151 (See the Example section of A241150.)
%t A241151     z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]];
%t A241151      unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]];
%t A241151      Column[m] (* A241150 as an array *)
%t A241151      Flatten[m] (* A241150 as a sequence *)
%t A241151      Table[Length[m[[n]]], {n, 1, z}] (* A241151 *)
%t A241151      Table[Max[m[[n]]], {n, 1, z}] (* A241152 *)
%t A241151      Table[Last[m[[n]]], {n, 1, z}] (* A241153 *)
%t A241151      (* Next, show the graph G(k) *)
%t A241151      k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* _Peter J. C. Moses_, Apr 15 2014 *)
%Y A241151 Cf. A241150, A241152, A241153.
%K A241151 nonn,more
%O A241151 2,2
%A A241151 _Clark Kimberling_ and _Peter J. C. Moses_, Apr 17 2014