cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241152 Maximal number of partitions having the same degree in the partition graph G(n) defined at A241150.

This page as a plain text file.
%I A241152 #8 Apr 22 2014 22:19:09
%S A241152 2,2,3,3,4,6,8,10,13,17,22,32,43,57,77,94,119,144,178,209,274,364,465,
%T A241152 597,746,935,1143,1389,1674,2006,2376,2803,3284,3905,4853,6010,7360,
%U A241152 8988,10834,13070,15565,18522,21836,25713,30030,35048,40575,46930,53950
%N A241152 Maximal number of partitions having the same degree in the partition graph G(n) defined at A241150.
%e A241152 a(7) counts these 6 partitions:  61, 52, 43, 331, 322, 2221, which all have degree 2 in G(7), as seen by putting k = 7 in the Mathematica program.
%t A241152 z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]];
%t A241152      unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]];
%t A241152      Column[m] (* A241150 as an array *)
%t A241152      Flatten[m] (* A241150 as a sequence *)
%t A241152      Table[Length[m[[n]]], {n, 1, z}] (* A241151 *)
%t A241152      Table[Max[m[[n]]], {n, 1, z}] (* A241152 *)
%t A241152      Table[Last[m[[n]]], {n, 1, z}] (* A241153 *)
%t A241152      (* Next, show the graph G(k) *)
%t A241152      k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* _Peter J. C. Moses_, Apr 15 2014 *)
%Y A241152 Cf. A241150, A241151, A241153.
%K A241152 nonn,easy
%O A241152 2,1
%A A241152 _Clark Kimberling_ and _Peter J. C. Moses_, Apr 17 2014