cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241153 Number of partitions having the maximal degree in the partition graph G(n) defined at A241150.

This page as a plain text file.
%I A241153 #8 Apr 24 2014 17:10:08
%S A241153 2,1,1,2,1,1,2,5,1,1,2,5,10,1,1,2,5,10,20,1,1,2,5,10,20,36,1,1,2,5,10,
%T A241153 20,36,65,1,1,2,5,10,20,36,65,110,1,1,2,5,10,20,36,65,110,185,1,1,2,5,
%U A241153 10,20,36,65,110,185,300
%N A241153 Number of partitions having the maximal degree in the partition graph G(n) defined at A241150.
%C A241153 a(n) = last number in row n of G(n), for n >= 2.  The numbers in this sequence can be formatted as a triangle:
%C A241153     2
%C A241153     1 1 2
%C A241153     1 1 2 5
%C A241153     1 1 2 5 10
%C A241153     1 1 2 5 10 20
%C A241153     1 1 2 5 10 20 36 ...
%C A241153     Deleting column 1 leaves
%C A241153     1 2
%C A241153     1 2 5
%C A241153     1 2 5 10
%C A241153     1 2 5 10 20
%C A241153     1 2 5 10 20 36... ,
%C A241153     in which row n is identical to the first n+1 terms of A000712.
%e A241153 a(9) counts these 5 partitions:  5211, 4311, 42111, 321111, 32211, which all have degree 5, which is maximal for the graph G(9), as seen by putting k = 9 in the Mathematica program.  (See the Example section of A241150.)
%t A241153 z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]];
%t A241153      unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]];
%t A241153      Column[m] (* A241150 as an array *)
%t A241153      Flatten[m] (* A241150 as a sequence *)
%t A241153      Table[Length[m[[n]]], {n, 1, z}] (* A241151 *)
%t A241153      Table[Max[m[[n]]], {n, 1, z}] (* A241152 *)
%t A241153      Table[Last[m[[n]]], {n, 1, z}] (* A241153 *)
%t A241153      (* Next, show the graph G(k) *)
%t A241153      k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* _Peter J. C. Moses_, Apr 15 2014 *)
%Y A241153 Cf. A241150, A241151, A241152.
%K A241153 nonn,easy
%O A241153 2,1
%A A241153 _Clark Kimberling_ and _Peter J. C. Moses_, Apr 17 2014