cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241168 Triangle read by rows: T(n,k) (1 <= k <= n) = Steffensen's bracket function [n,n-k].

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 9, 25, 26, 1, 14, 67, 149, 150, 1, 20, 145, 525, 1081, 1082, 1, 27, 275, 1450, 4651, 9365, 9366, 1, 35, 476, 3430, 15421, 47229, 94585, 94586, 1, 44, 770, 7266, 43281, 180894, 545707, 1091669, 1091670, 1, 54, 1182, 14154, 107751, 581280, 2359225, 7087005, 14174521, 14174522
Offset: 1

Views

Author

N. J. A. Sloane, Apr 22 2014

Keywords

Comments

Steffensen's bracket function [n,k] = Sum_{s=k..n-1} Stirling2(n,s+1)*s!/k!.
The numbers are used in numerical integration.

Examples

			Triangle begins:
1,
1, 2,
1, 5, 6,
1, 9, 25, 26,
1, 14, 67, 149, 150,
1, 20, 145, 525, 1081, 1082,
1, 27, 275, 1450, 4651, 9365, 9366,
1, 35, 476, 3430, 15421, 47229, 94585, 94586,
1, 44, 770, 7266, 43281, 180894, 545707, 1091669, 1091670,
...
		

References

  • J. F. Steffensen, On a class of polynomials and their application to actuarial problems, Skandinavisk Aktuarietidskrift, 11 (1928), 75-97.

Crossrefs

Diagonals include A000096, A000629, A002050, A002051, A241169, A241170.

Programs

  • Maple
    with(combinat);
    T:=proc(n,k) add(stirling2(n,s+1)*s!/k!,s=k..n-1); end;
    for n from 1 to 12 do lprint([seq(T(n,n-k),k=1..n)]); od: