This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241180 #21 Mar 18 2019 08:09:05 %S A241180 1,4,3,3,2,2,3,2,2,1,2,1,2,2,2,1,2,1,6,6,1,5,3,4,2,3,1,5,1,6,2,2,5,1, %T A241180 2,4,4,1,3,4,3,4,1,3,2,3,2,2,1,5,2,2,2,1,4,1,4,3,3,3,1,3,3,3,1,2,1,2, %U A241180 4,4,2,1,2,2,4,1,3,3,3,4,1,3,3,2,3,2,2 %N A241180 Start with n; add to it any of its digits; repeat; a(n) = minimal number of steps needed to reach a prime greater than n. %C A241180 Is it a theorem that a(n) aways exists? %C A241180 Yes: as long as nonzero digits are used, eventually you reach a number x starting with 10, large enough that there is a prime between x and 3*x/2. All the numbers from x to 3*x/2 start with 1, so if you use the digit 1 you will eventually reach a prime. - _Robert Israel_, Mar 17 2019 %C A241180 A variant of this (A241181) sets a(n) = 0 if n is already a prime. %D A241180 Eric Angelini, Posting to Sequence Fans Mailing List, Apr 20 2014 %H A241180 Hiroaki Yamanouchi, <a href="/A241180/b241180.txt">Table of n, a(n) for n = 1..100000</a> %e A241180 Examples, in condensed notation: %e A241180 1+1=2 %e A241180 2+2=4+4=8+8=16+1=17 %e A241180 3+3=6+6=12+1=13 %e A241180 4+4=8+8=16+1=17 %e A241180 5+5=10+1=11 %e A241180 6+6=12+1=13 %e A241180 7+7=14+4=18+1=19 %e A241180 8+8=16+1=17 %e A241180 9+9=18+1=19 %e A241180 10+1=11 %e A241180 11+1=12+1=13 %e A241180 12+1=13 %e A241180 13+3=16+1=17 %e A241180 14+4=18+1=19 %e A241180 15+1=16+1=17 %e A241180 16+1=17 %e A241180 17+1=18+1=19 %e A241180 18+1=19 %e A241180 19+9=28+8=36+3=39+9=48+8=56+5=61 %e A241180 20+2=22+2=24+2=26+6=32+2=34+3=37 %e A241180 ... %p A241180 g:= proc(n,Nmax) option remember; local L,d,t; %p A241180 if isprime(n) then return 0 fi; %p A241180 if n > Nmax then return infinity fi; %p A241180 L:= convert(convert(n,base,10),set) minus {0}; %p A241180 1 + min(seq(procname(n+d),d=L)); %p A241180 end proc: %p A241180 f:= proc(n,Nmax) local L,d,t; %p A241180 L:= convert(convert(n,base,10),set) minus {0}; %p A241180 1 + min(seq(g(n+d, Nmax),d=L)) %p A241180 end proc: %p A241180 map(f, [$1..200], 1000); # _Robert Israel_, Mar 17 2019 %t A241180 A241180[n_] := Module[{c, nx}, %t A241180 c = 1; nx = n; %t A241180 While[ ! %t A241180 AnyTrue[nx = Flatten[nx + IntegerDigits[nx]], %t A241180 PrimeQ [#] && # > n &], c++]; %t A241180 Return[c]]; %t A241180 Table[A241180[i], {i, 100}] (* _Robert Price_, Mar 17 2019 *) %Y A241180 Related sequences: A241173, A241174, A241175, A241176, A241177, A241178, A241179, A241180, A241181, A241182, A241183. %K A241180 easy,nonn,base %O A241180 1,2 %A A241180 _N. J. A. Sloane_, Apr 23 2014 %E A241180 a(23)-a(87) from _Hiroaki Yamanouchi_, Sep 05 2014