cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241181 Start with n; add to it any of its digits; repeat; a(n) = minimal number of steps needed to reach a prime.

Original entry on oeis.org

1, 0, 0, 3, 0, 2, 0, 2, 2, 1, 0, 1, 0, 2, 2, 1, 0, 1, 0, 6, 1, 5, 0, 4, 2, 3, 1, 5, 0, 6, 0, 2, 5, 1, 2, 4, 0, 1, 3, 4, 0, 4, 0, 3, 2, 3, 0, 2, 1, 5, 2, 2, 0, 1, 4, 1, 4, 3, 0, 3, 0, 3, 3, 3, 1, 2, 0, 2, 4, 4, 0, 1, 0, 2, 4, 1, 3, 3, 0, 4, 1, 3, 0, 2, 3, 2, 2
Offset: 1

Views

Author

N. J. A. Sloane, Apr 23 2014

Keywords

Comments

a(n) = 0 iff n is a prime.
Is it a theorem that a(n) always exists?
Yes: the proof is similar to that of Robert Israel for A241180. - Rémy Sigrist, Jul 25 2020

Examples

			Examples, in condensed notation:
1+1=2
2
3
4+4=8+8=16+1=17
5
6+6=12+1=13
7
8+8=16+1=17
9+9=18+1=19
10+1=11
11
12+1=13
13
14+4=18+1=19
15+1=16+1=17
16+1=17
17
18+1=19
19
20+2=22+2=24+2=26+6=32+2=34+3=37
...
		

References

  • Eric Angelini, Posting to Sequence Fans Mailing List, Apr 20 2014

Crossrefs

Programs

  • Mathematica
    A241181[n_] := Module[{c, nx},
       If[PrimeQ[n], Return[0]];
       c = 1; nx = n;
       While[ ! AnyTrue[nx = Flatten[nx + IntegerDigits[nx]], PrimeQ], c++];
       Return[c]];
    Table[A241181[i], {i, 100}] (* Robert Price, Mar 17 2019 *)

Extensions

a(23)-a(87) from Hiroaki Yamanouchi, Sep 05 2014