A241181 Start with n; add to it any of its digits; repeat; a(n) = minimal number of steps needed to reach a prime.
1, 0, 0, 3, 0, 2, 0, 2, 2, 1, 0, 1, 0, 2, 2, 1, 0, 1, 0, 6, 1, 5, 0, 4, 2, 3, 1, 5, 0, 6, 0, 2, 5, 1, 2, 4, 0, 1, 3, 4, 0, 4, 0, 3, 2, 3, 0, 2, 1, 5, 2, 2, 0, 1, 4, 1, 4, 3, 0, 3, 0, 3, 3, 3, 1, 2, 0, 2, 4, 4, 0, 1, 0, 2, 4, 1, 3, 3, 0, 4, 1, 3, 0, 2, 3, 2, 2
Offset: 1
Examples
Examples, in condensed notation: 1+1=2 2 3 4+4=8+8=16+1=17 5 6+6=12+1=13 7 8+8=16+1=17 9+9=18+1=19 10+1=11 11 12+1=13 13 14+4=18+1=19 15+1=16+1=17 16+1=17 17 18+1=19 19 20+2=22+2=24+2=26+6=32+2=34+3=37 ...
References
- Eric Angelini, Posting to Sequence Fans Mailing List, Apr 20 2014
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
Mathematica
A241181[n_] := Module[{c, nx}, If[PrimeQ[n], Return[0]]; c = 1; nx = n; While[ ! AnyTrue[nx = Flatten[nx + IntegerDigits[nx]], PrimeQ], c++]; Return[c]]; Table[A241181[i], {i, 100}] (* Robert Price, Mar 17 2019 *)
Extensions
a(23)-a(87) from Hiroaki Yamanouchi, Sep 05 2014
Comments