This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241196 #39 Feb 16 2025 08:33:21 %S A241196 2,3,7,31,211,2311,43891,78541,120121,870871,1381381,2282281,4084081, %T A241196 13123111,82192111,106696591,300690391,562582021,892371481,6915878971, %U A241196 71166625531,200560490131 %N A241196 Primes p at which phi(p-1)/(p-1) reaches a new minimum, where phi is Euler's totient function. %C A241196 For these p, the numerator and denominator of phi(p-1)/(p-1) are listed in A241197 and A241198. This sequence appears to be related to A073918, the smallest prime which is 1 more than a product of n distinct primes. %C A241196 By Dirichlet's theorem on primes in arithmetic progressions, for any n there is a prime p such that p-1 is divisible by the primorial A002110(n). Then phi(p-1)/(p-1) <= Product_{i=1..n} (1 - 1/prime(i)). Since Sum_{i >= 1} prime(i) diverges, that goes to 0 as n -> infinity. Thus there are primes with phi(p-1)/(p-1) arbitrarily close to 0. - _Robert Israel_, Jan 18 2016 %C A241196 5*10^12 < a(23) <= 12234189897931. - _Giovanni Resta_, Apr 14 2016 %D A241196 R. K. Guy, Unsolved Problems in Number Theory, A2. %H A241196 Tamiru Jarso, Tim Trudgian, <a href="https://arxiv.org/abs/1710.04320">Quadratic residues that are not primitive roots</a>, arXiv:1710.04320 [math.NT], 2017. %H A241196 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EuclidNumber.html">Euclid Number</a> %p A241196 m:= infinity: %p A241196 p:= 1: %p A241196 count:= 0: %p A241196 while count < 10 do %p A241196 p:= nextprime(p); %p A241196 r:= numtheory:-phi(p-1)/(p-1); %p A241196 if r < m then %p A241196 count:= count+1; %p A241196 A[count]:= p; %p A241196 m:= r; %p A241196 fi %p A241196 od: %p A241196 seq(A[i],i=1..count); # _Robert Israel_, Jan 18 2016 %t A241196 tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Transpose[tMin][[1]] %Y A241196 Cf. A002110, A008330 (phi(prime(n)-1)), A073918, A241194, A241195. %K A241196 nonn,more %O A241196 1,1 %A A241196 _T. D. Noe_, Apr 17 2014 %E A241196 a(20) from _Dimitri Papadopoulos_, Jan 11 2016 %E A241196 a(21)-a(22) from _Giovanni Resta_, Apr 14 2016