This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241203 #17 Jun 07 2023 21:15:17 %S A241203 5,6,7,9,12,15,19,23,29,37,46,58,72,90,113,142,177,222,277,346,433, %T A241203 542,677,847,1058,1323,1654,2067,2584,3231,4038,5048,6310,7888,9860, %U A241203 12325,15407,19259,24074,30092,37615,47019,58774,73468,91835,114794,143492,179366,224207,280259 %N A241203 a(n) = floor(5^n/4^(n-1)). %C A241203 a(n) is the curvature (rounded down) of circles inscribed in minor segment where chord length equal to sagitta length starting from a unit circle, the next iterations are nested down at scale factor 4/5. The curvature of circles inscribed in major segment would be A065565: floor((5/4)^n). See illustrations. %H A241203 G. C. Greubel, <a href="/A241203/b241203.txt">Table of n, a(n) for n = 1..1000</a> %H A241203 Kival Ngaokrajang, <a href="/A241203/a241203.pdf">Illustrations of initial terms</a> %F A241203 a(n) = floor(5^n/4^(n-1)), n >= 1. %t A241203 Floor[4*(5/4)^Range[60]] (* _G. C. Greubel_, Jun 07 2023 *) %o A241203 (PARI) for(n=1,100,print1(floor(5^n/4^(n-1)),", ")) %o A241203 (Magma) [Floor(4*(5/4)^n): n in [1..60]]; // _G. C. Greubel_, Jun 07 2023 %o A241203 (SageMath) [(5^n//4^(n-1)) for n in range(1,61)] # _G. C. Greubel_, Jun 07 2023 %Y A241203 Cf. A065565. %K A241203 nonn,easy %O A241203 1,1 %A A241203 _Kival Ngaokrajang_, Aug 08 2014