This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241204 #42 Jun 23 2025 12:23:44 %S A241204 1,8,32,96,256,640,1536,3584,8192,18432,40960,90112,196608,425984, %T A241204 917504,1966080,4194304,8912896,18874368,39845888,83886080,176160768, %U A241204 369098752,771751936,1610612736,3355443200,6979321856,14495514624,30064771072,62277025792 %N A241204 Expansion of (1 + 2*x)^2/(1 - 2*x)^2. %H A241204 Vincenzo Librandi, <a href="/A241204/b241204.txt">Table of n, a(n) for n = 0..1000</a> %H A241204 Sela Fried, <a href="https://arxiv.org/abs/2406.18923">Counting r X s rectangles in nondecreasing and Smirnov words</a>, arXiv:2406.18923 [math.CO], 2024. See p. 12. %H A241204 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4). %F A241204 a(n) = 2^(2+n)*n for n>0. - _Colin Barker_, Apr 23 2014 %F A241204 a(n) = 4*a(n-1)-4*a(n-2) for n>2. - _Colin Barker_, Apr 23 2014 %F A241204 From _Amiram Eldar_, Jan 13 2021: (Start) %F A241204 Sum_{n>=1} 1/a(n) = log(2)/4. %F A241204 Sum_{n>=1} (-1)^(n+1)/a(n) = log(3/2)/4. (End) %F A241204 E.g.f.: 1 + 8*x*exp(x). - _G. C. Greubel_, Jun 07 2023 %p A241204 A241204:= n->`if`(n=0, 1, 2^(n+2)*n); seq(A241204(n), n=0..20); # _Wesley Ivan Hurt_, Apr 22 2014 %t A241204 Table[2^(n+2)*n + Boole[n==0], {n,0,40}] (* _G. C. Greubel_, Jun 07 2023 *) %t A241204 LinearRecurrence[{4,-4},{1,8,32},30] (* _Harvey P. Dale_, Jun 23 2025 *) %o A241204 (Magma) R<x>:=PowerSeriesRing(Integers(), 41); Coefficients(R!((1+2*x)^2/(1-2*x)^2)); %o A241204 (PARI) Vec((2*x+1)^2/(2*x-1)^2 + O(x^100)) \\ _Colin Barker_, Apr 22 2014 %o A241204 (Sage) %o A241204 def A241204(i): %o A241204 if i==0: return 1 %o A241204 else: return 2^(2+i)*i; %o A241204 [A241204(n) for n in (0..30)] # _Bruno Berselli_, Apr 23 2014 %Y A241204 Subsequence of A008574. %K A241204 nonn,easy %O A241204 0,2 %A A241204 _Ilya Lopatin_ and _Juri-Stepan Gerasimov_, Apr 17 2014