A241213 a(n) is built digit-by-digit (see comments for details).
1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 100, 101, 102, 103, 104, 105, 110, 111, 112, 113, 114, 115, 120, 121, 122, 123, 124, 125, 130, 131, 132, 133, 134, 135, 140, 141, 142, 143, 144, 145
Offset: 1
Examples
a(2287) = 10611. 10611 is built digit-by-digit as a_4 a_3 a_2 a_1 = 10 6 1 1. And a_1 + a_2*primorial(2) + a_3*primorial(3) + a_4*primorial(4) = 1 + 1*6 + 6*30 + 10*210 = 2287. (The definition of "digit" is a nonnegative integer. See comments for how to get a_1, a_2, a_3, a_4.)
Links
- Lear Young, Table of n, a(n) for n = 1..100000
Programs
-
Sage
Pr = Primes() c = oeis(2110)[:10] def bjz(a): d = len(str(a)) + 1 b = [0] * (d) b[0] = a % 6 s = 0 for x in range(1, d): if x > 1: s += c[x] * b[x-1] b[x] = ((a - b[0] - s) / c[x+1] ) % Pr.unrank(x+1) return int(''.join(map(str, b[::-1]))) [ bjz(x) for x in range(1, 101)] # Lear Young, Apr 17 2014
Comments