A241256 Number of 2 X n 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.
2, 5, 4, 10, 12, 22, 41, 59, 120, 171, 306, 494, 784, 1345, 2112, 3547, 5782, 9402, 15643, 25307, 41868, 68465, 112078, 184535, 301346, 495580, 811726, 1330658, 2184497, 3577622, 5872217, 9625155, 15783147, 25889388, 42437724, 69611469, 114132047
Offset: 1
Keywords
Examples
Some solutions for n=4: ..3..3..2..2....2..2..3..3....2..2..3..3....2..2..3..3....2..2..3..3 ..2..1..3..1....3..1..2..1....0..0..0..2....3..1..0..2....0..0..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A241255.
Formula
Empirical: a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - a(n-5) - a(n-6) + a(n-7) + 2*a(n-8) + a(n-10) for n>12.
Empirical g.f.: x*(2 + 5*x - 4*x^3 - 4*x^4 + x^5 + 8*x^6 + 8*x^7 + 11*x^8 + x^9 + 3*x^10 - 3*x^11) / ((1 + x)*(1 - x - x^2 - x^3 + 2*x^4 - x^5 + 2*x^6 - 3*x^7 + x^8 - x^9)). - Colin Barker, Oct 29 2018