cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241257 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

This page as a plain text file.
%I A241257 #6 Jun 02 2025 10:02:33
%S A241257 4,17,13,34,71,135,356,734,1705,3914,8291,19714,42700,93528,214479,
%T A241257 462299,1030477,2304077,5035291,11240675,24870524,54876698,121998539,
%U A241257 269425049,596725510,1322494224,2923575132,6478965125,14341026682
%N A241257 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.
%C A241257 Row 3 of A241255
%H A241257 R. H. Hardin, <a href="/A241257/b241257.txt">Table of n, a(n) for n = 1..202</a>
%F A241257 Empirical: a(n) = 5*a(n-2) +12*a(n-3) -10*a(n-4) -49*a(n-5) -32*a(n-6) +99*a(n-7) +157*a(n-8) -89*a(n-9) -342*a(n-10) -104*a(n-11) +431*a(n-12) +412*a(n-13) -199*a(n-14) -494*a(n-15) -154*a(n-16) -16*a(n-17) +1491*a(n-18) +1405*a(n-19) -1976*a(n-20) -3729*a(n-21) -239*a(n-22) +1932*a(n-23) +2761*a(n-24) -1387*a(n-25) +1240*a(n-26) +884*a(n-27) -1768*a(n-28) -1322*a(n-29) +738*a(n-30) -734*a(n-31) -1142*a(n-32) -314*a(n-33) +2396*a(n-34) +196*a(n-35) -1802*a(n-36) +778*a(n-37) +1882*a(n-38) -1840*a(n-39) -1356*a(n-40) +744*a(n-41) -900*a(n-42) -560*a(n-43) +220*a(n-44) -104*a(n-45) -32*a(n-46) +244*a(n-47) +24*a(n-48) -72*a(n-49) +56*a(n-50) -24*a(n-52) for n>59
%e A241257 Some solutions for n=4
%e A241257 ..2..2..3..2....3..3..2..2....2..2..3..3....2..2..3..2....3..3..2..2
%e A241257 ..0..0..0..3....2..1..3..1....0..0..2..1....0..0..0..3....2..1..3..1
%e A241257 ..0..3..1..2....0..2..0..2....0..0..0..3....0..0..2..2....0..2..2..2
%K A241257 nonn
%O A241257 1,1
%A A241257 _R. H. Hardin_, Apr 18 2014