A241262 Array t(n,k) = binomial(n*k, n+1)/n, where n >= 1 and k >= 2, read by ascending antidiagonals.
1, 2, 3, 5, 10, 6, 14, 42, 28, 10, 42, 198, 165, 60, 15, 132, 1001, 1092, 455, 110, 21, 429, 5304, 7752, 3876, 1020, 182, 28, 1430, 29070, 57684, 35420, 10626, 1995, 280, 36, 4862, 163438, 444015, 339300, 118755, 24570, 3542, 408, 45, 16796, 937365, 3506100, 3362260, 1391280, 324632, 50344, 5850, 570, 55
Offset: 1
Examples
Array begins: 1, 3, 6, 10, 15, 21, ... 2, 10, 28, 60, 110, 182, ... 5, 42, 165, 455, 1020, 1995, ... 14, 198, 1092, 3876, 10626, 24570, ... 42, 1001, 7752, 35420, 118755, 324632, ... 132, 5304, 57684, 339300, 1391280, 4496388, ... etc.
References
- N. S. S. Gu, H. Prodinger, S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010) 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2
Links
- MathOverflow, Root estimation
Programs
-
Mathematica
t[n_, k_] := Binomial[n*k, n+1]/n; Table[t[n-k+2, k], {n, 1, 10}, {k, 2, n+1}] // Flatten
Comments