cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241272 Number of partitions p of n into distinct parts such that max(p) = 5*min(p).

This page as a plain text file.
%I A241272 #7 Apr 24 2014 11:13:32
%S A241272 0,0,0,0,0,0,1,0,1,1,1,1,2,1,0,2,1,1,2,2,2,3,3,4,6,5,5,7,7,9,11,10,11,
%T A241272 12,12,14,18,18,18,21,21,24,27,30,30,36,37,42,47,49,54,60,64,71,81,83,
%U A241272 91,100,107,116,129,136,147,159,172,184,200,213,228
%N A241272 Number of partitions p of n into distinct parts such that max(p) = 5*min(p).
%e A241272 a(12) counts these 2 partitions:  {10,2}, {5,4,2,1}.
%t A241272 z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t A241272 Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
%t A241272 Table[Count[f[n], p_ /; Max[p] == 3*Min[p]], {n, 0, z}] (* A241063 *)
%t A241272 Table[Count[f[n], p_ /; Max[p] == 4*Min[p]], {n, 0, z}] (* A241069 *)
%t A241272 Table[Count[f[n], p_ /; Max[p] == 5*Min[p]], {n, 0, z}] (* A241272 *)
%t A241272 Table[Count[f[n], p_ /; Max[p] == 6*Min[p]], {n, 0, z}] (* A241273 *)
%Y A241272 Cf. A241035, A241063, A241269, A241273.
%K A241272 nonn,easy
%O A241272 0,13
%A A241272 _Clark Kimberling_, Apr 18 2014