cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241273 Number of partitions p of n into distinct parts such that max(p) = 6*min(p).

This page as a plain text file.
%I A241273 #7 Apr 24 2014 11:12:42
%S A241273 0,0,0,0,0,0,0,1,0,1,1,1,2,1,3,1,2,2,2,2,1,4,2,3,3,5,5,6,8,8,9,10,13,
%T A241273 14,16,18,20,20,24,25,28,31,36,37,40,42,46,51,55,62,65,72,76,83,89,98,
%U A241273 107,117,126,139,149,163,177,195,208,226,247,267,291
%N A241273 Number of partitions p of n into distinct parts such that max(p) = 6*min(p).
%e A241273 a(14) counts these 3 partitions:  {12,2}, {6,5,2,1}, {6,4,3,1}.
%t A241273 z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t A241273 Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
%t A241273 Table[Count[f[n], p_ /; Max[p] == 3*Min[p]], {n, 0, z}] (* A241063 *)
%t A241273 Table[Count[f[n], p_ /; Max[p] == 4*Min[p]], {n, 0, z}] (* A241069 *)
%t A241273 Table[Count[f[n], p_ /; Max[p] == 5*Min[p]], {n, 0, z}] (* A241272 *)
%t A241273 Table[Count[f[n], p_ /; Max[p] == 6*Min[p]], {n, 0, z}] (* A241273 *)
%Y A241273 Cf. A241035, A241063, A241269, A241272.
%K A241273 nonn,easy
%O A241273 0,13
%A A241273 _Clark Kimberling_, Apr 18 2014