cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A241278 Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

3, 3, 9, 36, 139, 532, 2111, 8473, 34053, 136880, 550213, 2211810, 8891567, 35744766, 143696235, 577666729, 2322248891, 9335550407, 37529342193, 150869654682, 606502776180, 2438168211361, 9801544653549, 39402644818707, 158400380771179
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Column 2 of A241283

Examples

			Some solutions for n=4
..3..2....3..3....2..2....3..3....3..3....3..3....3..2....3..3....2..2....3..3
..0..3....2..2....0..0....2..2....2..2....2..2....0..3....2..2....0..0....2..2
..2..0....0..0....3..3....0..2....2..2....2..2....2..0....0..0....0..3....2..2
..2..2....2..2....3..3....0..2....0..2....2..0....2..0....0..2....3..3....0..0
		

Formula

Empirical: a(n) = 8*a(n-1) -20*a(n-2) +16*a(n-3) +4*a(n-4) -25*a(n-5) +53*a(n-6) -68*a(n-7) +100*a(n-8) -62*a(n-9) -41*a(n-10) +34*a(n-11) -117*a(n-12) +108*a(n-13) -54*a(n-14) +93*a(n-15) +41*a(n-16) +20*a(n-17) +8*a(n-18) -41*a(n-19) -26*a(n-20) -41*a(n-21) +9*a(n-22) +5*a(n-23) +2*a(n-24) +4*a(n-25) -13*a(n-26) +4*a(n-27) -3*a(n-28) -2*a(n-29) +4*a(n-30) +a(n-31)

A241279 Number of n X 3 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 5, 41, 236, 1615, 12356, 96171, 761754, 6079503, 48655224, 389953075, 3127470262, 25091008666, 201333623389, 1615666305519, 12966002651979, 104056784269403, 835102517412497, 6702114259119338, 53787979810054439
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Column 3 of A241283.

Examples

			Some solutions for n=4
..3..2..3....3..2..3....3..2..3....3..2..3....3..3..2....3..2..3....3..2..3
..2..1..2....2..1..2....2..1..2....2..1..2....2..1..3....0..3..2....0..3..2
..2..2..0....0..0..2....0..0..0....2..2..0....3..1..2....0..2..0....0..2..2
..0..2..0....2..0..0....0..2..2....0..0..3....2..2..2....0..0..0....0..0..0
		

Crossrefs

Cf. A241283.

A241280 Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

7, 13, 126, 773, 6783, 77955, 1009773, 14440961, 217830879, 3381893022, 53303588755, 846694715304, 13502819912939, 215775668844659, 3451661371624419, 55243520432395260, 884402593677949937
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Column 4 of A241283

Examples

			Some solutions for n=4
..3..3..2..3....3..2..3..3....3..2..3..2....3..2..3..2....3..3..2..3
..2..1..3..0....0..3..1..2....0..3..2..3....0..3..2..3....2..1..3..2
..2..1..3..2....0..0..2..2....2..2..2..2....2..0..2..0....2..2..2..2
..2..2..2..2....2..2..0..0....2..1..2..0....0..0..2..2....2..0..2..2
		

A241284 Number of 2Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 3, 5, 13, 17, 35, 90, 141, 288, 670, 1101, 2265, 4995, 8474, 17477, 37329, 64894, 133967, 279966, 496683, 1023868, 2105032, 3799717, 7810452, 15858460, 29052053, 59504463, 119660776, 221989407, 452920894, 904106577, 1695187559, 3445124586
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Row 2 of A241283

Examples

			Some solutions for n=4
..3..3..2..3....3..2..3..2....3..3..2..3....3..3..2..3....3..3..2..2
..2..1..1..0....2..1..1..3....2..1..3..0....2..2..3..2....2..1..1..0
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) +7*a(n-3) -8*a(n-4) -7*a(n-5) +9*a(n-7) +10*a(n-8) -24*a(n-9) +5*a(n-10) +29*a(n-11) -18*a(n-12) -10*a(n-13) -10*a(n-14) +16*a(n-15) +12*a(n-16) -12*a(n-17) for n>18

A241285 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

10, 9, 41, 126, 224, 934, 2741, 5225, 20537, 55667, 113588, 422541, 1125360, 2473769, 8840311, 23068806, 53641026, 184488860, 476641936, 1157699906, 3848451987, 9887622772, 24862454468, 80220253420, 205811182949, 531847795781
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Row 3 of A241283

Examples

			Some solutions for n=4
..3..3..2..2....3..3..2..3....3..3..2..3....3..2..3..3....3..3..2..3
..2..1..1..0....2..1..3..0....2..1..3..0....2..1..1..2....2..1..1..2
..2..2..0..0....3..1..3..2....3..1..0..0....2..0..2..2....3..2..0..3
		

A241286 Number of 4Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

24, 36, 236, 773, 1800, 16843, 54167, 159403, 1014287, 3055986, 10609732, 60969600, 191316011, 725713555, 3761999379, 12377676801, 48908645074, 236055743934, 808188094976, 3233355467890, 14810044876373, 52228582550562
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Row 4 of A241283

Examples

			Some solutions for n=4
..3..2..3..3....3..2..3..2....3..2..3..2....3..2..3..2....3..2..3..3
..0..3..1..2....0..3..2..3....0..3..1..3....2..1..2..3....0..3..1..2
..2..0..2..3....2..2..2..2....2..2..2..2....0..0..2..2....2..2..2..2
..0..0..3..3....2..0..1..2....3..1..0..2....0..0..0..2....2..0..1..2
		

A241287 Number of 5Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

56, 139, 1615, 6783, 20717, 451318, 1543713, 8288114, 79113707, 276340333, 1878731208, 14642190232, 59010752583, 404841299508, 2875913561864, 13757588225177, 90753330244908, 606550462257317, 3111205949073436
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Row 5 of A241283

Examples

			Some solutions for n=3
..3..2..3....3..2..3....3..2..3....3..2..3....3..2..3....3..2..3....3..2..3
..0..3..2....2..1..2....2..1..2....0..3..2....2..1..2....0..3..2....2..1..2
..0..0..2....0..2..0....0..0..0....2..0..0....2..0..2....2..2..0....0..0..3
..2..2..0....0..0..0....0..2..0....0..0..3....0..0..0....2..0..0....2..2..2
..2..0..2....0..0..2....2..0..2....2..2..2....0..0..2....2..2..2....0..0..0
		

A241277 Number of n X n 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 3, 41, 773, 20717, 15616828, 2949336562
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Diagonal of A241283

Examples

			Some solutions for n=4
..3..3..2..3....3..2..3..3....3..3..2..3....3..2..3..3....3..2..3..3
..2..1..3..2....2..1..1..2....2..1..3..2....2..1..1..2....0..3..1..2
..2..2..2..0....2..0..2..3....3..2..0..0....0..2..2..2....2..0..1..3
..2..0..0..0....2..0..1..2....2..1..2..3....2..2..0..0....0..2..2..2
		

A241281 Number of nX5 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

10, 17, 224, 1800, 20717, 309657, 5423164, 113305157, 2759021846, 75062814060, 2194626322280, 66941258995665, 2089883847033445, 66049038598082087, 2100649576601196394, 67025504140569165794
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Column 5 of A241283

Examples

			Some solutions for n=3
..3..2..3..2..2....3..3..2..3..2....3..2..3..3..3....3..3..2..3..2
..2..1..2..1..0....2..1..1..0..3....0..3..2..1..2....2..1..3..1..3
..2..2..3..2..0....2..2..0..2..2....2..0..0..2..2....3..2..3..2..2
		

A241282 Number of nX6 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

15, 35, 934, 16843, 451318, 15616828, 730435588, 40083129145, 2390612565177, 147969997624544
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Column 6 of A241283

Examples

			Some solutions for n=3
..3..3..2..3..2..3....3..3..2..3..3..2....3..3..2..3..2..3....3..3..2..2..2..2
..2..1..3..1..1..0....2..1..3..1..1..3....2..1..3..1..3..0....2..1..1..0..0..0
..2..1..3..2..2..0....3..1..2..2..3..2....3..1..3..2..3..2....2..1..2..0..0..0
		
Showing 1-10 of 11 results. Next