cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A241301 Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 6, 6, 12, 16, 28, 38, 66, 92, 154, 222, 362, 532, 854, 1272, 2018, 3036, 4776, 7236, 11316, 17230, 26832, 41000, 63658, 97516, 151086, 231858, 358688, 551144, 851718, 1309890, 2022722, 3112810, 4804190, 7396624, 11411300, 17574716, 27106414
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Examples

			Some solutions for n=4:
..3..2....2..3....3..2....2..3....3..2....3..2....2..3....3..2....2..3....3..2
..3..1....2..3....1..2....2..1....3..2....3..2....1..3....1..2....2..1....1..2
..2..1....2..1....3..2....2..3....1..2....1..2....1..2....3..2....2..3....3..2
..2..3....2..1....3..2....1..3....1..2....3..2....3..2....3..1....2..3....1..2
		

Crossrefs

Column 2 of A241306.

Formula

Empirical: a(n) = 2*a(n-2) + a(n-3) - a(n-5).
Empirical g.f.: 2*x*(1 + 3*x + x^2 - x^3 - x^4) / (1 - 2*x^2 - x^3 + x^5). - Colin Barker, Oct 29 2018

A241302 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 15, 37, 116, 304, 869, 2398, 6813, 18782, 53067, 148098, 418537, 1170103, 3295099, 9238212, 25977693, 72895582, 204839547, 575103785, 1615442306, 4536454530, 12740816702, 35781379670, 100486564040, 282214599565, 792544916224
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Column 3 of A241306

Examples

			Some solutions for n=4
..2..3..2....2..3..2....3..2..3....2..3..2....3..2..3....2..3..2....2..3..2
..2..3..2....1..3..1....3..1..3....2..3..2....1..0..3....2..3..2....2..1..1
..3..1..2....3..0..2....2..1..1....2..1..2....2..0..1....3..1..3....2..0..1
..2..1..2....2..0..3....3..0..1....1..3..1....2..0..3....1..2..2....2..3..3
		

A241303 Number of nX4 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

6, 25, 74, 330, 1145, 4499, 15827, 58043, 209838, 757771, 2745263, 9924295, 35873441, 129961622, 469870606, 1700617363, 6154480549, 22269120491, 80588613827, 291628152979, 1055299289297, 3818925623420, 13819524339631
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Column 4 of A241306

Examples

			Some solutions for n=4
..3..2..2..2....3..2..3..2....3..2..3..2....3..2..3..3....3..2..3..2
..3..0..1..1....1..2..1..1....1..2..1..1....1..2..1..1....1..2..1..1
..1..0..2..1....2..0..0..1....3..0..0..2....3..2..2..2....3..2..2..1
..1..0..0..2....2..3..0..3....2..0..3..3....3..0..0..2....3..0..2..2
		

A241304 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

8, 40, 186, 1462, 6718, 41336, 217785, 1215485, 6526016, 35833494, 193952033, 1061500415, 5762495209, 31479526822, 171241179058, 934265732146, 5087340052649, 27739343474292, 151117812704114, 823771403533550
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Column 5 of A241306

Examples

			Some solutions for n=4
..3..2..3..2..3....3..2..3..2..3....3..2..3..2..3....3..2..3..2..3
..1..2..1..2..3....1..2..1..2..1....3..0..1..1..3....3..0..1..2..1
..3..2..2..2..2....3..0..0..2..2....1..0..2..2..2....2..1..0..2..3
..2..0..0..1..2....1..0..2..0..2....1..0..2..0..2....2..3..2..2..3
		

A241307 Number of 2Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

5, 6, 15, 25, 40, 89, 121, 237, 390, 682, 1250, 2069, 3698, 6352, 11013, 19408, 33478, 58524, 101542, 176797, 307761, 535313, 932344, 1620570, 2821554, 4908976, 8540842, 14866293, 25861744, 45006289, 78311151, 136266311, 237120535
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Row 2 of A241306

Examples

			Some solutions for n=4
..3..2..3..2....3..2..3..3....3..2..3..3....2..3..3..2....3..2..2..2
..3..1..1..2....3..0..1..2....3..1..1..2....2..1..1..2....3..0..0..1
		

Formula

Empirical: a(n) = 2*a(n-2) +3*a(n-3) -a(n-4) -a(n-5) +2*a(n-6) -10*a(n-8) -7*a(n-9) +8*a(n-10) +5*a(n-11) -3*a(n-12) -7*a(n-13) +7*a(n-14) for n>20

A241308 Number of 3Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

11, 6, 37, 74, 186, 646, 1278, 3418, 9113, 21457, 60124, 137479, 352570, 903787, 2152775, 5701225, 13891880, 34569079, 88272180, 217502063, 550658503, 1377693048, 3441000964, 8635401747, 21620210682, 54285004854, 135701054466
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Row 3 of A241306

Examples

			Some solutions for n=4
..3..2..3..2....3..2..3..2....3..2..3..2....3..2..3..3....3..2..3..2
..3..0..1..1....1..2..1..1....1..0..3..2....3..0..1..1....3..0..1..1
..2..0..0..1....3..2..3..2....2..0..0..3....2..1..0..2....1..2..0..2
		

A241309 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

25, 12, 116, 330, 1462, 5757, 22343, 79043, 304799, 1330380, 4460064, 16854505, 67201703, 234900475, 920572773, 3459723044, 12626410604, 48658166127, 178994028939, 683367868924, 2559363759045, 9527974589307, 36279708405734
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Row 4 of A241306

Examples

			Some solutions for n=4
..3..2..3..3....3..2..3..2....2..3..2..2....3..2..2..2....2..3..3..3
..3..0..1..1....1..2..1..1....2..1..0..1....3..0..0..1....2..1..1..1
..1..2..0..2....3..2..3..1....2..3..2..1....1..0..2..1....2..3..0..2
..1..3..3..2....3..2..2..2....2..1..2..3....3..0..2..3....1..3..3..1
		

A241310 Number of 5Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

57, 16, 304, 1145, 6718, 49918, 283985, 1666242, 9581018, 58628966, 324057071, 1715902217, 10434282663, 59683589128, 312272985439, 1891207127431, 10449777035931, 58705938827485, 346683382415999, 1902526607149734
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Row 5 of A241306

Examples

			Some solutions for n=3
..3..2..3....3..2..3....3..2..2....2..3..3....2..3..2....3..2..3....2..3..2
..3..1..1....1..0..3....3..1..1....2..1..1....2..3..2....1..2..1....2..3..2
..1..2..2....2..0..1....1..2..1....3..0..2....3..1..2....3..0..2....3..1..2
..1..3..2....1..0..2....2..0..3....3..0..1....2..1..1....3..0..2....2..1..2
..3..0..2....3..0..1....3..1..2....1..0..2....1..0..2....1..0..2....1..0..3
		

A241300 Number of n X n 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 6, 37, 330, 6718, 490486, 70316883, 30759996872
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Diagonal of A241306

Examples

			Some solutions for n=4
..3..2..3..2....3..2..3..3....3..2..3..2....2..3..3..2....3..2..3..2
..3..2..3..2....1..2..1..1....3..0..1..1....2..1..1..2....1..2..1..2
..2..0..0..3....2..3..3..2....1..2..0..2....2..0..0..3....3..2..0..2
..2..3..0..3....2..1..1..2....3..2..3..1....2..3..0..2....2..1..0..2
		

A241305 Number of nX6 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

14, 89, 646, 5757, 49918, 490486, 3893262, 37039909, 307030328, 2801405991, 23598380169, 213133103052
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Column 6 of A241306

Examples

			Some solutions for n=4
..2..3..2..2..3..2....3..2..3..2..3..2....3..2..3..3..2..3....3..2..3..2..3..3
..2..3..0..0..3..2....3..0..1..2..1..1....1..2..1..1..2..1....1..2..1..2..1..2
..2..1..2..0..0..3....1..2..0..2..3..1....3..2..0..0..3..2....3..0..0..2..3..1
..1..3..2..1..1..3....3..0..0..1..3..2....1..0..0..2..1..2....1..0..0..2..2..2
		
Showing 1-10 of 11 results. Next