This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241351 #6 Jun 26 2022 19:59:55 %S A241351 4,9,19,55,72,124,243,370,695,956,1417,2469,3404,5728,8713,12387, %T A241351 19273,29598,44909,73642,107481,163546,255220,378761,599088,925233, %U A241351 1374249,2146719,3251091,4948266,7795540,11712323,17982730,27767716,41826534 %N A241351 Number of n X 3 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4. %C A241351 Column 3 of A241356. %H A241351 R. H. Hardin, <a href="/A241351/b241351.txt">Table of n, a(n) for n = 1..210</a> %F A241351 Empirical: a(n) = 3*a(n-5) +4*a(n-6) +5*a(n-8) +2*a(n-9) +16*a(n-11) +3*a(n-13) +6*a(n-14) -10*a(n-15) -22*a(n-16) -2*a(n-17) -13*a(n-18) +26*a(n-19) -18*a(n-20) +18*a(n-21) -49*a(n-22) -2*a(n-23) -21*a(n-24) +18*a(n-25) +22*a(n-26) +61*a(n-27) -62*a(n-28) -13*a(n-29) -102*a(n-30) -32*a(n-31) +71*a(n-32) +43*a(n-33) +30*a(n-34) +53*a(n-35) -34*a(n-36) -204*a(n-37) +137*a(n-38) -22*a(n-39) +80*a(n-40) +108*a(n-41) +118*a(n-42) -242*a(n-43) +150*a(n-44) -100*a(n-45) +49*a(n-46) -3*a(n-47) +176*a(n-48) -162*a(n-49) +87*a(n-50) -118*a(n-51) +40*a(n-52) -89*a(n-53) +74*a(n-54) -11*a(n-55) +4*a(n-56) -65*a(n-57) +62*a(n-58) -91*a(n-59) +20*a(n-60) -22*a(n-61) +38*a(n-62) -20*a(n-63) +21*a(n-64) -19*a(n-65) +7*a(n-66) -5*a(n-67) +2*a(n-68) for n>85. %e A241351 Some solutions for n=4 %e A241351 ..3..2..2....3..2..2....3..2..3....2..3..3....3..2..2....3..2..3....3..2..3 %e A241351 ..3..1..2....3..1..2....3..1..1....2..1..1....3..1..1....3..1..2....3..2..2 %e A241351 ..2..3..3....2..3..2....2..3..3....3..2..2....2..3..3....2..3..3....2..3..3 %e A241351 ..3..1..2....2..1..1....3..0..2....2..1..2....3..0..1....2..1..2....3..1..2 %Y A241351 Cf. A241356. %K A241351 nonn %O A241351 1,1 %A A241351 _R. H. Hardin_, Apr 20 2014