This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241370 #6 Jul 23 2025 11:14:11 %S A241370 1,1,2,2,7,5,4,28,47,14,8,121,460,326,41,16,523,4617,7376,2284,122,32, %T A241370 2261,46245,169982,118488,16026,365,64,9775,463567,3910194,6280325, %U A241370 1904096,112458,1094,128,42261,4646421,90008909,332185927,232173463 %N A241370 T(n,k)=Number of nXk 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order. %C A241370 Table starts %C A241370 ....1.......1..........2..............4.................8...................16 %C A241370 ....2.......7.........28............121...............523.................2261 %C A241370 ....5......47........460...........4617.............46245...............463567 %C A241370 ...14.....326.......7376.........169982...........3910194.............90008909 %C A241370 ...41....2284.....118488........6280325.........332185927..........17583615124 %C A241370 ..122...16026....1904096......232173463.......28238828935........3437694358689 %C A241370 ..365..112458...30598800.....8582759752.....2400505507498......672068364873884 %C A241370 .1094..789166..491723328...317280724429...204061855414167...131390467341043995 %C A241370 .3281.5537942.7902006144.11729003927933.17346886991310331.25687100469219790719 %H A241370 R. H. Hardin, <a href="/A241370/b241370.txt">Table of n, a(n) for n = 1..144</a> %F A241370 Empirical for column k: %F A241370 k=1: a(n) = 4*a(n-1) -3*a(n-2) %F A241370 k=2: a(n) = 7*a(n-1) +2*a(n-3) -8*a(n-4) for n>5 %F A241370 k=3: [order 8] %F A241370 k=4: [order 31] %F A241370 k=5: [order 94] %F A241370 Empirical for row n: %F A241370 n=1: a(n) = 2*a(n-1) for n>2 %F A241370 n=2: a(n) = 5*a(n-1) -2*a(n-2) -4*a(n-3) for n>5 %F A241370 n=3: a(n) = 9*a(n-1) +16*a(n-2) -50*a(n-3) -72*a(n-4) -32*a(n-5) -32*a(n-6) for n>8 %F A241370 n=4: [order 21] for n>23 %F A241370 n=5: [order 65] for n>67 %e A241370 Some solutions for n=4 k=4 %e A241370 ..0..1..0..1....0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2 %e A241370 ..1..1..2..0....1..0..2..1....0..2..0..0....2..0..0..1....0..1..2..1 %e A241370 ..1..2..2..0....2..0..0..1....1..2..0..0....1..0..2..0....2..0..1..0 %e A241370 ..1..2..2..1....0..1..0..2....0..1..0..1....2..0..1..2....1..0..1..0 %Y A241370 Column 1 is A007051(n-1) %Y A241370 Row 1 is A000079(n-2) %K A241370 nonn,tabl %O A241370 1,3 %A A241370 _R. H. Hardin_, Apr 20 2014