cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A241364 Number of n X 2 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

1, 7, 47, 326, 2284, 16026, 112458, 789166, 5537942, 38862302, 272714782, 1913766030, 13429783278, 94243014094, 661346912462, 4640977825550, 32567892540814, 228543997497870, 1603799162836494, 11254602102332686
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Examples

			Some solutions for n=4:
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..0
..1..2....0..1....2..0....0..2....1..1....0..2....0..1....0..0....1..0....0..0
..2..0....1..0....0..0....2..1....1..0....1..0....0..2....2..0....0..1....0..1
..1..2....1..0....0..1....2..1....1..2....1..2....1..0....2..0....0..2....0..2
		

Crossrefs

Column 2 of A241370.

Formula

Empirical: a(n) = 7*a(n-1) + 2*a(n-3) - 8*a(n-4) for n>5.
Empirical g.f.: x*(1 + x)*(1 - x - x^2 - 4*x^3) / ((1 - x)*(1 - 6*x - 6*x^2 - 8*x^3)). - Colin Barker, Oct 30 2018

A241365 Number of nX3 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

2, 28, 460, 7376, 118488, 1904096, 30598800, 491723328, 7902006144, 126985443680, 2040659387360, 32793449527584, 526991588462752, 8468768559462432, 136093331438385952, 2187023382674637856, 35145522751283965984
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Column 3 of A241370

Examples

			Some solutions for n=4
..0..1..2....0..1..0....0..0..1....0..1..0....0..1..2....0..1..0....0..1..0
..0..0..1....2..0..1....0..0..1....0..1..2....1..0..2....0..1..2....1..0..2
..2..0..2....2..1..0....0..0..0....2..1..0....2..0..2....1..0..1....2..0..2
..2..1..2....2..0..2....1..0..0....2..1..0....1..2..0....2..0..2....0..2..1
		

Formula

Empirical: a(n) = 15*a(n-1) +18*a(n-2) -8*a(n-3) -68*a(n-4) -164*a(n-5) -256*a(n-6) -176*a(n-7) +64*a(n-8)

A241366 Number of nX4 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

4, 121, 4617, 169982, 6280325, 232173463, 8582759752, 317280724429, 11729003927933, 433589294151366, 16028613931818561, 592534154813233243, 21904372151717063740, 809744915865384534529, 29934061758919096085329
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Column 4 of A241370

Examples

			Some solutions for n=4
..0..1..0..2....0..1..0..1....0..1..2..0....0..1..0..2....0..1..0..1
..2..0..1..0....1..2..0..2....1..0..1..0....2..0..1..2....2..1..0..1
..0..0..1..0....2..1..0..1....1..0..1..0....2..0..1..0....0..2..1..1
..0..2..0..1....1..0..2..0....1..0..1..0....2..0..1..2....1..0..1..0
		

Formula

Empirical: a(n) = 39*a(n-1) -89*a(n-2) +700*a(n-3) -7268*a(n-4) +12612*a(n-5) -23904*a(n-6) +125306*a(n-7) -773407*a(n-8) +79505*a(n-9) +3859531*a(n-10) -3389476*a(n-11) -9274781*a(n-12) +92305*a(n-13) +19760919*a(n-14) +25560786*a(n-15) -3646222*a(n-16) -31076228*a(n-17) -38721450*a(n-18) -14157300*a(n-19) +16466073*a(n-20) +30488603*a(n-21) +16120777*a(n-22) +778176*a(n-23) -4523626*a(n-24) -3303044*a(n-25) -267592*a(n-26) -1363088*a(n-27) -220864*a(n-28) +213504*a(n-29) -47104*a(n-30) +98304*a(n-31)

A241367 Number of nX5 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

8, 523, 46245, 3910194, 332185927, 28238828935, 2400505507498, 204061855414167, 17346886991310331, 1474623966935696590, 125354818374255514287, 10656161088317132650049, 905858830474955211374142
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Column 5 of A241370

Examples

			Some solutions for n=3
..0..1..0..1..2....0..1..2..1..2....0..1..1..2..1....0..1..0..2..1
..0..2..2..0..1....2..0..2..1..0....0..1..1..0..2....1..1..0..0..1
..0..2..2..0..1....0..1..0..1..2....0..1..1..2..0....1..0..2..0..1
		

Formula

Empirical recurrence of order 94 (see link above)

A241368 Number of nX6 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

16, 2261, 463567, 90008909, 17583615124, 3437694358689, 672068364873884, 131390467341043995, 25687100469219790719, 5021879971708227297466, 981787679524970561772746, 191941475758292573127986823
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Column 6 of A241370

Examples

			Some solutions for n=2
..0..1..0..2..1..2....0..1..2..0..1..0....0..1..2..0..1..0....0..1..0..1..0..1
..1..0..1..0..2..1....0..2..1..2..0..1....2..0..2..1..2..0....1..2..1..2..1..0
		

A241369 Number of nX7 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

32, 9775, 4646421, 2071815945, 930716218752, 418470887683606, 188148208461270141, 84594118185093500244, 38034801930029063688859, 17101026608230289359891342, 7688882351945169694778666410
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Column 7 of A241370

Examples

			Some solutions for n=2
..0..1..2..0..2..0..1....0..1..2..1..2..1..0....0..1..2..1..0..2..1
..2..0..2..1..2..0..1....1..2..1..2..1..0..1....2..0..2..0..2..0..1
		

A241371 Number of 2 X n 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

2, 7, 28, 121, 523, 2261, 9775, 42261, 182711, 789933, 3415199, 14765285, 63836295, 275990109, 1193216815, 5158758677, 22303399319, 96426611981, 416891226559, 1802389311557, 7792457656743, 33689944754365, 145655251212111
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Examples

			Some solutions for n=4:
..0..1..0..0....0..1..2..0....0..1..0..1....0..1..1..0....0..1..0..2
..1..2..0..0....1..0..2..0....0..1..2..1....0..1..1..0....1..0..2..1
		

Crossrefs

Row 2 of A241370.

Formula

Empirical: a(n) = 5*a(n-1) - 2*a(n-2) - 4*a(n-3) for n>5.
Empirical g.f.: x*(1 - x - x^2)*(2 - x - 2*x^2) / (1 - 5*x + 2*x^2 + 4*x^3). - Colin Barker, Oct 30 2018

A241372 Number of 3 X n 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

5, 47, 460, 4617, 46245, 463567, 4646421, 46573979, 466838093, 4679401043, 46904463629, 470151838595, 4712616517773, 47237408834627, 473489150832621, 4746068456910627, 47572717892835405, 476850156780960707
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Examples

			Some solutions for n=4:
..0..1..0..2....0..1..0..0....0..1..2..0....0..1..0..2....0..1..1..2
..2..1..1..2....1..2..0..0....0..1..0..1....0..0..1..2....0..1..1..2
..2..1..1..0....2..0..1..2....1..2..0..2....2..0..1..2....2..1..2..0
		

Crossrefs

Row 3 of A241370.

Formula

Empirical: a(n) = 9*a(n-1) + 16*a(n-2) - 50*a(n-3) - 72*a(n-4) - 32*a(n-5) - 32*a(n-6) for n>8.
Empirical g.f.: x*(5 + 2*x - 43*x^2 - 25*x^3 + 42*x^4 + 34*x^5 + 32*x^6 + 16*x^7) / (1 - 9*x - 16*x^2 + 50*x^3 + 72*x^4 + 32*x^5 + 32*x^6). - Colin Barker, Oct 30 2018

A241373 Number of 4Xn 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

14, 326, 7376, 169982, 3910194, 90008909, 2071815945, 47690157718, 1097756412666, 25268747760871, 581649645222695, 13388725521741539, 308188912773527912, 7094058807175007496, 163294876256510271215
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Row 4 of A241370

Examples

			Some solutions for n=4
..0..1..0..2....0..1..0..2....0..1..0..2....0..1..1..2....0..1..0..0
..0..2..0..1....0..1..2..0....1..0..2..0....0..1..1..0....2..1..0..0
..1..2..0..2....0..2..0..0....1..2..1..2....1..1..1..0....2..0..2..0
..1..2..0..2....0..2..0..1....0..2..1..2....1..1..0..2....1..2..1..0
		

Formula

Empirical: a(n) = 32*a(n-1) -214*a(n-2) +26*a(n-3) +3879*a(n-4) -15470*a(n-5) +19107*a(n-6) +72463*a(n-7) -211026*a(n-8) +106996*a(n-9) +193844*a(n-10) -2000756*a(n-11) +412552*a(n-12) +8652096*a(n-13) -3035456*a(n-14) -10691648*a(n-15) +6530688*a(n-16) +2014720*a(n-17) -6114304*a(n-18) +2244608*a(n-19) +1933312*a(n-20) -720896*a(n-21) for n>23

A241374 Number of 5Xn 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

41, 2284, 118488, 6280325, 332185927, 17583615124, 930716218752, 49265035135614, 2607715881819884, 138032784674740932, 7306413606898346790, 386746399853598819698, 20471436010315498503254, 1083603347076782168624072
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Row 5 of A241370

Examples

			Some solutions for n=3
..0..1..2....0..1..2....0..1..1....0..1..1....0..1..1....0..1..0....0..1..0
..1..0..2....2..0..0....2..1..1....2..1..1....0..1..1....0..2..0....0..0..1
..2..0..0....2..0..0....0..1..0....1..1..2....0..0..2....0..1..0....2..0..1
..0..1..0....1..0..1....1..2..1....1..2..1....1..0..0....0..2..0....2..0..0
..1..0..1....1..0..1....2..0..1....0..2..0....1..0..0....2..0..2....0..1..0
		

Formula

Empirical recurrence of order 65 (see link above)
Showing 1-10 of 13 results. Next