cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241392 Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

This page as a plain text file.
%I A241392 #7 Jun 02 2025 10:07:07
%S A241392 2,5,13,28,64,142,318,726,1634,3695,8363,18904,42787,96771,218940,
%T A241392 495514,1121224,2537388,5742666,12996786,29415660,66576728,150686121,
%U A241392 341060866,771951453,1747237409,3954724092,8951198975,20260385570,45857968649
%N A241392 Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.
%C A241392 Column 2 of A241397
%H A241392 R. H. Hardin, <a href="/A241392/b241392.txt">Table of n, a(n) for n = 1..210</a>
%F A241392 Empirical: a(n) = 3*a(n-2) +10*a(n-3) +3*a(n-4) -12*a(n-5) -46*a(n-6) -36*a(n-7) +12*a(n-8) +107*a(n-9) +87*a(n-10) +2*a(n-11) -145*a(n-12) -138*a(n-13) -48*a(n-14) +147*a(n-15) +185*a(n-16) +89*a(n-17) -94*a(n-18) -210*a(n-19) -111*a(n-20) +40*a(n-21) +176*a(n-22) +85*a(n-23) +30*a(n-24) -77*a(n-25) -47*a(n-26) -57*a(n-27) +14*a(n-29) +21*a(n-30) +14*a(n-31) -3*a(n-32) +2*a(n-33) -5*a(n-34) +a(n-35) +2*a(n-36) +a(n-37) -a(n-38)
%e A241392 Some solutions for n=4
%e A241392 ..3..2....2..3....3..2....2..3....2..3....2..3....3..2....2..3....3..2....2..3
%e A241392 ..1..0....2..3....1..2....1..3....1..3....1..3....1..0....1..3....1..0....1..3
%e A241392 ..2..0....3..0....2..0....2..0....1..0....3..2....3..0....3..2....3..0....3..0
%e A241392 ..2..0....2..0....2..3....3..0....2..0....1..2....3..2....2..0....3..0....2..0
%K A241392 nonn
%O A241392 1,1
%A A241392 _R. H. Hardin_, Apr 20 2014