A241410 Number of partitions of n such that the number of parts having multiplicity >1 is not a part and the number of distinct parts is a part.
0, 1, 0, 1, 0, 1, 2, 2, 4, 5, 7, 8, 12, 17, 22, 29, 33, 49, 59, 77, 97, 123, 153, 199, 234, 306, 375, 460, 557, 708, 845, 1048, 1266, 1548, 1852, 2282, 2698, 3303, 3919, 4732, 5634, 6786, 7991, 9598, 11343, 13502, 15897, 18912, 22180, 26298, 30775, 36259
Offset: 0
Examples
a(6) counts these 2 partitions: 42, 321.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; e[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; d[p_] := Length[DeleteDuplicates[p]]; Table[Count[f[n], p_ /; MemberQ[p, e[p]]], {n, 0, z}] (* A241408 *) Table[Count[f[n], p_ /; MemberQ[p, e[p]] && MemberQ[p, d[p]]], {n, 0, z}] (* A241409 *) Table[Count[f[n], p_ /; ! MemberQ[p, e[p]] && MemberQ[p, d[p]] ], {n, 0, z}] (* A241410 *) Table[Count[f[n], p_ /; MemberQ[p, e[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241411 *) Table[Count[f[n], p_ /; ! MemberQ[p, e[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241412 *)
Comments