A241412 Number of partitions of n such that neither the number of parts having multiplicity >1 nor the number of distinct parts is a part.
1, 0, 1, 1, 3, 2, 4, 4, 7, 7, 11, 14, 19, 21, 30, 38, 51, 59, 81, 98, 124, 156, 199, 239, 311, 365, 468, 572, 711, 844, 1070, 1271, 1572, 1884, 2318, 2749, 3387, 4000, 4879, 5796, 6977, 8266, 9986, 11769, 14071, 16632, 19800, 23300, 27700, 32471, 38447
Offset: 0
Examples
a(6) counts these 4 partitions: 6, 51, 33, 222.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; e[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; d[p_] := Length[DeleteDuplicates[p]]; Table[Count[f[n], p_ /; MemberQ[p, e[p]]], {n, 0, z}] (* A241408 *) Table[Count[f[n], p_ /; MemberQ[p, e[p]] && MemberQ[p, d[p]]], {n, 0, z}] (* A241409 *) Table[Count[f[n], p_ /; ! MemberQ[p, e[p]] && MemberQ[p, d[p]] ], {n, 0, z}] (* A241410 *) Table[Count[f[n], p_ /; MemberQ[p, e[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241411 *) Table[Count[f[n], p_ /; ! MemberQ[p, e[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241412 *)
Comments