A241413 Number of partitions p of n such that the number of numbers having multiplicity 1 in p is a part of p.
0, 1, 0, 1, 1, 4, 5, 8, 10, 17, 21, 29, 38, 59, 68, 100, 124, 170, 214, 288, 351, 470, 576, 743, 921, 1176, 1430, 1816, 2214, 2753, 3364, 4176, 5015, 6215, 7478, 9120, 10966, 13351, 15916, 19301, 22982, 27618, 32846, 39354, 46515, 55570, 65598, 77842, 91730
Offset: 0
Examples
a(6) counts these 5 partitions: 42, 411, 321, 3111, 21111; e.g., 411 is counted because 1 part of 411 has multiplicity 1, and 1 is a part of 411.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]] Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}] (* A241413 *) Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}] (* A241414 *) Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *) Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *) Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *) Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *)