This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241415 #4 Apr 29 2014 00:07:02 %S A241415 0,0,1,1,1,1,2,2,3,4,7,9,16,18,31,37,56,66,92,110,153,174,231,275,357, %T A241415 423,542,642,825,990,1228,1483,1869,2221,2757,3325,4055,4853,5926, %U A241415 7033,8519,10128,12110,14353,17142,20168,23938,28215,33243,39019,45968 %N A241415 Number of partitions p of n such that the number of numbers having multiplicity 1 in p is not a part and the number of numbers having multiplicity > 1 is a part. %F A241415 a(n) + A241415(n) + A241416(n) = A239737(n) for n >= 0. %e A241415 a(6) counts these 2 partitions: 2211, 111111. %t A241415 z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]] %t A241415 Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}] (* A241413 *) %t A241415 Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}] (* A241414 *) %t A241415 Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *) %t A241415 Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *) %t A241415 Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *) %t A241415 Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *) %Y A241415 Cf. A241413, A241414, A241416, A241417, A239737, A000041. %K A241415 nonn,easy %O A241415 0,7 %A A241415 _Clark Kimberling_, Apr 23 2014