cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241421 Decimal expansion of D(1), where D(x) is the infinite product function defined in the formula section (or in the Finch reference).

This page as a plain text file.
%I A241421 #29 Mar 19 2025 14:31:08
%S A241421 2,2,3,5,8,8,5,5,9,5,5,0,8,9,6,9,8,6,4,2,8,3,9,6,4,7,9,9,3,1,1,8,9,0,
%T A241421 6,4,4,8,4,5,1,5,9,1,2,2,8,5,9,5,2,4,7,4,7,7,9,3,4,4,7,9,7,8,2,6,0,6,
%U A241421 2,7,0,8,1,4,5,7,2,5,2,2,1,7,9,3,2,8,3,2,0,2,9,5,2,8,3,2,3,4,6,2,8,9,8,2
%N A241421 Decimal expansion of D(1), where D(x) is the infinite product function defined in the formula section (or in the Finch reference).
%D A241421 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin Constant, p. 136.
%H A241421 G. C. Greubel, <a href="/A241421/b241421.txt">Table of n, a(n) for n = 1..5000</a>
%H A241421 L. Almodovar, V. H. Moll, H. Quand, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Moll/moll3.html">Infinite products arising in paperfolding</a>, JIS 19 (2016) # 16.5.1 eq. (15).
%H A241421 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 20.
%H A241421 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>
%H A241421 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/Glaisher-KinkelinConstant.html">Glaisher-Kinkelin Constant</a>
%F A241421 D(x) = lim_{n->infinity} ( Product_{k=1..2n+1} (1+x/k)^((-1)^(k+1)*k) ).
%F A241421 D(x) = (e^(x/2-1/4)*A^3*G((x+1)/2)^2*Gamma(x/2)^(x-2)*Gamma((x+1)/2)^(1-x)*(Gamma((x+1)/2)/Gamma(x/2))^x)/(2^(1/12)*G(x/2)^2), where A is the Glaisher-Kinkelin constant and G is the Barnes G-function.
%F A241421 D(1) = A^6/(2^(1/6)*sqrt(Pi)).
%e A241421 2.23588559550896986428396479931189064484515912285952474779344797826...
%t A241421 RealDigits[Glaisher^6/(2^(1/6)*Sqrt[Pi]), 10, 104] // First
%o A241421 (PARI) default(realprecision, 100); A=exp(1/12-zeta'(-1)); A^6/(2^(1/6)* sqrt(Pi)) \\ _G. C. Greubel_, Aug 24 2018
%Y A241421 Cf. A006752, A019610 (D(2)), A074962, A241420 (D(1/2)).
%K A241421 nonn,cons,easy
%O A241421 1,1
%A A241421 _Jean-François Alcover_, Aug 08 2014