A241423 Largest number k > 0 such that n + k! is prime, or 0 if no such k exists.
1, 2, 1, 4, 1, 6, 0, 2, 1, 10, 1, 6, 0, 2, 1, 11, 1, 14, 0, 2, 1, 16, 0, 3, 0, 2, 1, 20, 1, 22, 0, 0, 0, 4, 1, 33, 0, 2, 1, 25, 1, 38, 0, 2, 1, 44, 0, 6, 0, 2, 1, 52, 0, 4, 0, 2, 1, 27, 1, 50, 0, 0, 0, 4, 1, 64, 0, 2, 1, 55, 1, 67, 0, 0, 0, 6, 1, 73, 0, 2, 1, 68, 0, 4, 0, 2, 1, 52, 0, 6
Offset: 2
Keywords
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 2..1000
Programs
-
Maple
a:= proc(n) local k; for k from min(numtheory:-factorset(n)) to 1 by -1 do if isprime(n+k!) then return(k) fi od: 0 end proc: seq(a(n),n=2..100); # Robert Israel, Aug 10 2014
-
Mathematica
a[n_] := Module[{k}, For[k = FactorInteger[n][[1, 1]], k >= 1, k--, If[PrimeQ[n + k!], Return[k]]]; 0]; a /@ Range[2, 100] (* Jean-François Alcover, Jul 27 2020, after Maple *)
-
PARI
a(n)=forstep(k=n,1,-1,if(ispseudoprime(n+k!),return(k))) n=2;while(n<150,print1(a(n),", ");n++)
Comments