A241472 a(n) = |{0 < k < sqrt(prime(n)): k^2 + 1 is a quadratic residue modulo prime(n)}|.
0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 3, 2, 4, 2, 3, 3, 3, 1, 5, 5, 4, 6, 5, 5, 3, 5, 5, 3, 3, 4, 7, 3, 7, 4, 6, 7, 7, 4, 4, 3, 6, 8, 8, 6, 5, 8, 7, 8, 6, 6, 8, 11, 8, 6, 7, 7, 5, 9, 2, 8, 3, 11, 10, 8, 6, 8, 7, 10, 5, 8, 8, 9, 13, 10, 10, 6, 6, 10, 11, 10
Offset: 1
Keywords
Examples
a(6) = 1 since 3^2 + 1 = 10 is a quadratic residue modulo prime(6) = 13. a(7) = 1 since 1^2 + 1 = 2 is a quadratic residue modulo prime(7) = 17. a(9) = 1 since 1^2 + 1 = 2 is a quadratic residue modulo prime(9) = 23. a(10) = 1 since 2^2 + 1 = 5 is a quadratic residue modulo prime(10) = 29. a(18) = 1 since 2^2 + 1 = 5 is a quadratic residue modulo prime(18) = 61.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_]:=Sum[If[JacobiSymbol[k^2+1,Prime[n]]==1,1,0],{k,1,Sqrt[Prime[n]-1]}] Table[a[n],{n,1,80}]
Comments