cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241476 Least positive primitive root g < prime(n) modulo prime(n) with g - 1 a square, or 0 if such a number g does not exist.

Original entry on oeis.org

1, 2, 2, 5, 2, 2, 5, 2, 5, 2, 17, 2, 17, 5, 5, 2, 2, 2, 2, 65, 5, 37, 2, 26, 5, 2, 5, 2, 10, 5, 65, 2, 5, 2, 2, 82, 5, 2, 5, 2, 2, 2, 101, 5, 2, 170, 2, 5, 2, 10, 5, 26, 37, 26, 5, 5, 2, 26, 5, 26, 5, 2, 5, 17, 10, 2, 37, 10, 2, 2, 5, 26, 10, 2, 2, 5, 2, 5, 17, 26
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2014

Keywords

Comments

According to the conjecture in A239957, a(n) should be always positive.

Examples

			a(4) = 5 since 2^2 + 1 = 5 is a primitive root modulo prime(4) = 7, but neither 0^1 + 1 = 1 nor 1^1 + 1 = 2 is a primitive root modulo prime(4) = 7.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=k^2+1
    dv[n_]:=Divisors[n]
    Do[Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];Print[n," ",k^2+1];Goto[bb];Label[aa];Continue,{k,0,Sqrt[Prime[n]-2]}];Print[n," ",0];Label[bb];Continue,{n,1,80}]
  • PARI
    ispr(n,p)=my(f=factor(p-1)[,1],m=Mod(n,p));for(i=1,#f, if(m^(p\f[i])==1, return(0))); m^(p-1)==1
    a(n)=my(p=prime(n));for(k=0,sqrtint(p-2),if(ispr(k^2+1,p), return(k^2+1)));0 \\ Charles R Greathouse IV, May 01 2014