This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241477 #20 Mar 05 2020 07:05:17 %S A241477 1,0,2,2,2,2,0,4,0,2,6,12,4,2,6,0,12,0,4,0,4,20,60,12,12,12,4,20,0,40, %T A241477 0,12,0,8,0,10,70,280,40,60,36,24,40,10,70,0,140,0,40,0,24,0,20,0,28, %U A241477 252,1260,140,280,120,120,120,60,140,28,252,0,504,0 %N A241477 Triangle read by rows, number of orbitals classified with respect to the first zero crossing, n>=1, 1<=k<=n. %C A241477 For the combinatorial definitions see A232500. An orbital w over n sectors has its first zero crossing at k if k is the smallest j such that the partial sum(1<=i<=j, w(i))) = 0, where w(i) are the jumps of the orbital represented by -1, 0, 1. %F A241477 If n is even and k is odd then T(n, k) = 0 else if k = 1 then T(n, 1) = A056040(n-1) else T(n, k) = 2*A057977(k-2)*A056040(n-k). %F A241477 T(n, n) = A241543(n). %F A241477 T(n+1, 1) = A126869(n). %F A241477 T(2*n, 2*n) = |A002420(n)|. %F A241477 T(2*n+1, 1) = A000984(n). %F A241477 T(2*n+1, n+1) = A241530(n). %F A241477 T(2*n+2, 2) = A028329(n). %F A241477 T(4*n, 2*n) = |A010370(n)|. %F A241477 T(4*n, 4*n) = |A024491(n)|. %F A241477 T(4*n+1, 1) = A001448(n). %F A241477 T(4*n+1, 2*n+1) = A002894(n). %e A241477 [1], [ 1] %e A241477 [2], [ 0, 2] %e A241477 [3], [ 2, 2, 2] %e A241477 [4], [ 0, 4, 0, 2] %e A241477 [5], [ 6, 12, 4, 2, 6] %e A241477 [6], [ 0, 12, 0, 4, 0, 4] %e A241477 [7], [20, 60, 12, 12, 12, 4, 20] %p A241477 A241477 := proc(n, k) %p A241477 if n = 0 then 1 %p A241477 elif k = 0 then 0 %p A241477 elif irem(n, 2) = 0 and irem(k, 2) = 1 then 0 %p A241477 elif k = 1 then (n-1)!/iquo(n-1,2)!^2 %p A241477 else 2*(n-k)!*(k-2)!/iquo(k,2)/(iquo(k-2,2)!*iquo(n-k,2)!)^2 %p A241477 fi end: %p A241477 for n from 1 to 9 do seq(A241477(n, k), k=1..n) od; %t A241477 T[n_, k_] := Which[n == 0, 1, k == 0, 0, Mod[n, 2] == 0 && Mod[k, 2] == 1, 0, k == 1, (n-1)!/Quotient[n-1, 2]!^2, True, 2*(n-k)!*(k-2)!/Quotient[k, 2]/(Quotient[k-2, 2]!*Quotient[n-k, 2]!)^2]; %t A241477 Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 20 2018, from Maple *) %o A241477 (Sage) %o A241477 def A241477_row(n): %o A241477 if n == 0: return [1] %o A241477 Z = [0]*n; T = [0] if is_odd(n) else [] %o A241477 for i in (1..n//2): T.append(-1); T.append(1) %o A241477 for p in Permutations(T): %o A241477 i = 0; s = p[0] %o A241477 while s != 0: i += 1; s += p[i]; %o A241477 Z[i] += 1 %o A241477 return Z %o A241477 for n in (1..9): A241477_row(n) %Y A241477 Row sums: A056040. %Y A241477 Cf. A232500. %K A241477 nonn,tabl %O A241477 1,3 %A A241477 _Peter Luschny_, Apr 23 2014