cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241477 Triangle read by rows, number of orbitals classified with respect to the first zero crossing, n>=1, 1<=k<=n.

This page as a plain text file.
%I A241477 #20 Mar 05 2020 07:05:17
%S A241477 1,0,2,2,2,2,0,4,0,2,6,12,4,2,6,0,12,0,4,0,4,20,60,12,12,12,4,20,0,40,
%T A241477 0,12,0,8,0,10,70,280,40,60,36,24,40,10,70,0,140,0,40,0,24,0,20,0,28,
%U A241477 252,1260,140,280,120,120,120,60,140,28,252,0,504,0
%N A241477 Triangle read by rows, number of orbitals classified with respect to the first zero crossing, n>=1, 1<=k<=n.
%C A241477 For the combinatorial definitions see A232500. An orbital w over n sectors has its first zero crossing at k if k is the smallest j such that the partial sum(1<=i<=j, w(i))) = 0, where w(i) are the jumps of the orbital represented by -1, 0, 1.
%F A241477 If n is even and k is odd then T(n, k) = 0 else if k = 1 then T(n, 1) = A056040(n-1) else T(n, k) = 2*A057977(k-2)*A056040(n-k).
%F A241477 T(n, n) = A241543(n).
%F A241477 T(n+1, 1) = A126869(n).
%F A241477 T(2*n, 2*n) = |A002420(n)|.
%F A241477 T(2*n+1, 1) = A000984(n).
%F A241477 T(2*n+1, n+1) = A241530(n).
%F A241477 T(2*n+2, 2) = A028329(n).
%F A241477 T(4*n, 2*n) = |A010370(n)|.
%F A241477 T(4*n, 4*n) = |A024491(n)|.
%F A241477 T(4*n+1, 1) = A001448(n).
%F A241477 T(4*n+1, 2*n+1) = A002894(n).
%e A241477 [1], [ 1]
%e A241477 [2], [ 0,  2]
%e A241477 [3], [ 2,  2,  2]
%e A241477 [4], [ 0,  4,  0,  2]
%e A241477 [5], [ 6, 12,  4,  2,  6]
%e A241477 [6], [ 0, 12,  0,  4,  0, 4]
%e A241477 [7], [20, 60, 12, 12, 12, 4, 20]
%p A241477 A241477 := proc(n, k)
%p A241477   if n = 0 then 1
%p A241477 elif k = 0 then 0
%p A241477 elif irem(n, 2) = 0 and irem(k, 2) = 1 then 0
%p A241477 elif k = 1 then (n-1)!/iquo(n-1,2)!^2
%p A241477 else 2*(n-k)!*(k-2)!/iquo(k,2)/(iquo(k-2,2)!*iquo(n-k,2)!)^2
%p A241477   fi end:
%p A241477 for n from 1 to 9 do seq(A241477(n, k), k=1..n) od;
%t A241477 T[n_, k_] := Which[n == 0, 1, k == 0, 0, Mod[n, 2] == 0 && Mod[k, 2] == 1,  0, k == 1, (n-1)!/Quotient[n-1, 2]!^2, True, 2*(n-k)!*(k-2)!/Quotient[k, 2]/(Quotient[k-2, 2]!*Quotient[n-k, 2]!)^2];
%t A241477 Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 20 2018, from Maple *)
%o A241477 (Sage)
%o A241477 def A241477_row(n):
%o A241477     if n == 0: return [1]
%o A241477     Z = [0]*n; T = [0] if is_odd(n) else []
%o A241477     for i in (1..n//2): T.append(-1); T.append(1)
%o A241477     for p in Permutations(T):
%o A241477         i = 0; s = p[0]
%o A241477         while s != 0: i += 1; s += p[i];
%o A241477         Z[i] += 1
%o A241477     return Z
%o A241477 for n in (1..9): A241477_row(n)
%Y A241477 Row sums: A056040.
%Y A241477 Cf. A232500.
%K A241477 nonn,tabl
%O A241477 1,3
%A A241477 _Peter Luschny_, Apr 23 2014