This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241489 #18 May 22 2025 10:21:37 %S A241489 16,52,101,252,1002,1001,10003,10002,10001,100003,100002,100001, %T A241489 1000003,1000002,1000001,10000003,10000002,10000001,100000003, %U A241489 100000002,100000001,1000000003,1000000002,1000000001,10000000003,10000000002,10000000001,100000000003,100000000002 %N A241489 Least number k not divisible by 10 such that k^3 contains n zeros. %C A241489 It is believed that a(n) will have the pattern 1000...0003, 1000...0002, 1000...0001 after a(6). %F A241489 For n > 6, a(n) = 10^(ceiling(n/3) + 1) + 3 - (n+2) mod 3. %e A241489 16 is not divisible by 10 and 16^3 = 4096, has 1 zero. So a(1) = 16. %e A241489 52 is not divisible by 10 and 52^3 = 140608, has 2 zeros. So a(2) = 52. %o A241489 (Python) %o A241489 def Cu(n): %o A241489 for k in range(10**100): %o A241489 if k % 10 != 0: %o A241489 if str(k**3).count("0") == n: %o A241489 return k %o A241489 n = 1 %o A241489 while n < 100: %o A241489 print(Cu(n)) %o A241489 n += 1 %o A241489 (PARI) a(n) = {k = 1; while ((d = digits(k^3)) && (((k % 10) == 0) || (sum(i=1, #d, d[i] == 0) != n)), k++); k;} \\ _Michel Marcus_, Apr 30 2014 %Y A241489 Cf. A134845. %K A241489 nonn,base %O A241489 1,1 %A A241489 _Derek Orr_, Apr 23 2014