This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241491 #10 Jul 23 2025 11:14:39 %S A241491 88,94,104,121,122,155,262,314,328,368,377,397,416,431,433,434,440, %T A241491 466,472,497,500,590,620,654,655,664,671,676,688,704,710,716,720,905, %U A241491 945,961,973,977,1063,1103,1114,1131,1228,1234,1249,1250,1270,1312,1343,1348 %N A241491 2*n is not the sum of two base-2 palindromes. %C A241491 Note that since all nonzero base-2 palindromes are odd, the sum of two nonzero base-2 palindromes is even. %H A241491 Robert Israel, <a href="/A241491/b241491.txt">Table of n, a(n) for n = 1..10000</a> %e A241491 86 is not in the sequence because 2*86 = 7 + 165, and 7 and 165 are in A006995. %p A241491 N:= 15; # for all entries up to 2^(N-1) %p A241491 with(SignalProcessing): # requires Maple 17+ %p A241491 rev2:= proc(n) option remember; %p A241491 rev2(floor(n/2)) + (n mod 2)*2^ilog2(n) %p A241491 end; %p A241491 rev2(0) := 0; rev2(1):= 1; %p A241491 B:= Array(1..2^N,datatype=float[8]); %p A241491 for d from 1 to N do %p A241491 d1:= ceil(d/2); %p A241491 for x from 2^(d1-1) to 2^d1-1 do %p A241491 if d::even then y:= x*2^d1+rev2(x) %p A241491 else y:= x*2^(d1-1)+rev2(floor(x/2)); %p A241491 fi; %p A241491 B[y]:= 1; %p A241491 od od: %p A241491 B2:= Convolution(B,B); %p A241491 A241491:= select(t -> B2[2*t-1] < 0.5, [$1..2^(N-1)]); # _Robert Israel_, Apr 24 2014 %Y A241491 Cf. A006995, A261678 (values of 2n). %K A241491 nonn,base %O A241491 1,1 %A A241491 _Robert Israel_, Apr 24 2014