A241492 a(n) = |{0 < g < prime(n): g is a primitive root modulo prime(n) and g is a product of two consecutive integers}|.
0, 1, 1, 0, 2, 2, 2, 1, 1, 1, 1, 2, 3, 3, 2, 3, 5, 3, 3, 2, 2, 2, 6, 3, 2, 5, 3, 4, 5, 5, 4, 7, 7, 7, 5, 4, 3, 5, 5, 8, 6, 2, 5, 4, 5, 3, 2, 5, 7, 6, 5, 4, 5, 8, 10, 8, 10, 4, 6, 6, 7, 8, 3, 4, 4, 9, 6, 4, 7, 8, 7, 5, 7, 7, 6, 9, 12, 6, 11, 8
Offset: 1
Keywords
Examples
a(9) = 1 since 4*5 = 20 is a primitive root modulo prime(9) = 23. a(10) = 1 since 1*2 = 2 is a primitive root modulo prime(10) = 29. a(11) = 1 since 3*4 = 12 is a primitive root modulo prime(11) = 31.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
f[k_]:=f[k]=k(k+1) dv[n_]:=dv[n]=Divisors[n] Do[m=0;Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,1,(Sqrt[4*Prime[n]-3]-1)/2}];Print[n," ",m];Continue,{n,1,80}]
Comments