This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241500 #13 Jul 28 2021 06:50:34 %S A241500 1,1,1,1,2,1,1,5,4,1,1,11,16,7,1,1,23,58,41,11,1,1,47,196,215,90,16,1, %T A241500 1,95,634,1041,640,176,22,1,1,191,1996,4767,4151,1631,315,29,1,1,383, %U A241500 6178,21001,25221,13587,3696,526,37,1,1,767,18916,90055,146140,105042,38409,7638,831,46,1 %N A241500 Triangle T(n,k): number of ways of partitioning the n-element multiset {1,1,2,3,...,n-1} into exactly k nonempty parts, n>=1 and 1<=k<=n. %F A241500 T(n,k) = S(n-1,k) + S(n-1,k-1) + C(k,2)*S(n-2,k), where S refers to Stirling numbers of the second kind (A008277), and C to binomial coefficients (A007318). %e A241500 There are 58 ways to partition {1,1,2,3,4,5} into three nonempty parts. %e A241500 The first few rows are: %e A241500 1; %e A241500 1, 1; %e A241500 1, 2, 1; %e A241500 1, 5, 4, 1; %e A241500 1, 11, 16, 7, 1; %e A241500 1, 23, 58, 41, 11, 1; %e A241500 1, 47, 196, 215, 90, 16, 1; %e A241500 1, 95, 634, 1041, 640, 176, 22, 1; %e A241500 1, 191, 1996, 4767, 4151, 1631, 315, 29, 1; %e A241500 1, 383, 6178, 21001, 25221, 13587, 3696, 526, 37, 1; %e A241500 ... %o A241500 (PARI) T(n,k) = stirling(n-1,k,2) + stirling(n-1,k-1,2) + binomial(k,2)*stirling(n-2,k,2); \\ _Michel Marcus_, Apr 24 2014 %Y A241500 The first five columns appear as A000012, A083329, A168583, A168584, A168585. %Y A241500 Row sums give A035098. %K A241500 nonn,easy,tabl %O A241500 1,5 %A A241500 _Andrew Woods_, Apr 24 2014