cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241516 Least positive primitive root g < prime(n) modulo prime(n) which is also a partition number given by A000041, or 0 if such a number g does not exist.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 11, 3, 3, 2, 3, 2, 2, 7, 5, 2, 5, 2, 2, 2, 22, 5, 2, 3, 2, 3, 2, 7, 3, 7, 7, 11, 3, 5, 2, 15, 5, 3, 3, 2, 5, 22, 15, 2, 3, 15, 2, 2, 3, 7, 11, 2, 2, 5, 2, 5, 3, 22
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 24 2014

Keywords

Comments

According to the conjecture in A241504, a(n) should be always positive.

Examples

			a(4) = 3 since 3 = A000041(3) is a primitive root modulo prime(4) = 7, but neither 1 = A000041(1) nor 2 = A000041(2) is.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=PartitionsP[k]
    dv[n_]:=Divisors[n]
    Do[Do[If[f[k]>Prime[n]-1,Goto[cc]];Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];Print[n," ",PartitionsP[k]];Goto[bb];Label[aa];Continue,{k,1,Prime[n]-1}];Label[cc];Print[Prime[n]," ",0];Label[bb];Continue,{n,1,80}]