A241518 Number of partitions p of n such that #m(1) = #m(2), where #m(i) = number of numbers in p that have multiplicity i.
1, 0, 0, 1, 2, 3, 3, 4, 5, 6, 8, 12, 16, 23, 27, 41, 46, 63, 71, 96, 109, 148, 161, 219, 256, 332, 379, 500, 580, 738, 859, 1079, 1250, 1560, 1791, 2220, 2563, 3116, 3595, 4369, 5054, 6080, 7020, 8418, 9729, 11617, 13409, 15911, 18417, 21713, 25078, 29467
Offset: 0
Examples
a(6) counts these 3 partitions: 411, 222, 111111.
Crossrefs
Cf. A241274.
Programs
-
Mathematica
z = 30; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]]; v[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 2 &]]]; Table[Count[IntegerPartitions[n], p_ /; u[p] == v[p]], {n, 0, z}]