This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241519 #29 Dec 12 2017 15:29:53 %S A241519 1,2,2,12,3,15,60,840,105,630,630,13860,6930,180180,360360,144144, %T A241519 9009,306306,306306,11639628,14549535,14549535,58198140,2677114440, %U A241519 334639305,3346393050 %N A241519 Denominators of b(n) = b(n-1)/2 + 1/(2*n), b(0)=0. %C A241519 Generally, 2*b(n) = b(n-1) + f(n). See, for f(n)=n, A000337(n)/2^n. %C A241519 a(0)=1. b(n) is mentioned in A241269. %C A241519 Difference table of b(n): %C A241519 0, 1/2, 1/2, 5/12, 1/3, 4/15, ... %C A241519 1/2, 0, -1/12, -1/12, -1/15, -1/20, ... %C A241519 -1/2, -1/12, 0, 1/60, 1/60, 11/840, ... %C A241519 5/12, 1/12, 1/60, 0, -1/280, -1/280, ... %C A241519 etc. %C A241519 b(n) is mentioned in A241269 as an autosequence of the first kind. %C A241519 The denominators of the first two upper diagonals are the positive Apéry numbers, A005430(n+1). Compare to the array in A003506. %C A241519 Numerators: 0, 1, 1, 5, 1, 4, 13, 151, 16, 83, 73, 1433, 647, 15341, ... . %F A241519 b(n) = -Re(Phi(2, 1, n + 1)) where Phi denotes the Lerch transcendent. - _Eric W. Weisstein_, Dec 11 2017 %e A241519 0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, 16/105, 83/630, 73/630, ... %e A241519 b(1) = (0+1)/2, hence a(1)=2. %e A241519 b(2) = (1/2+1/2)/2 = 1/2, hence a(2)=2. %e A241519 b(3) = (1/2+1/3)/2 = 5/12, hence a(3)=12. %t A241519 b[0] = 0; b[n_] := b[n] = 1/2*(b[n-1] + 1/n); Table[b[n] // Denominator, {n, 0, 25}] (* _Jean-François Alcover_, Apr 25 2014 *) %t A241519 Table[-Re[LerchPhi[2, 1, n + 1]], {n, 0, 20}] // Denominator (* _Eric W. Weisstein_, Dec 11 2017 *) %t A241519 -Re[LerchPhi[2, 1, Range[20]]] // Denominator (* _Eric W. Weisstein_, Dec 11 2017 *) %t A241519 RecurrenceTable[{b[n] == b[n - 1]/2 + 1/(2 n), b[0] == 0}, b[n], {n, 20}] // Denominator (* _Eric W. Weisstein_, Dec 11 2017 *) %Y A241519 Cf. A086466. %Y A241519 Cf. A242376 (numerators). %K A241519 nonn %O A241519 0,2 %A A241519 _Paul Curtz_, Apr 24 2014 %E A241519 Extension, after a(13), from _Jean-François Alcover_, Apr 24 2014