A241522 The number of P-positions in the game of Nim with up to 4 piles, allowing for piles of zero, such that the number of objects in each pile does not exceed n.
1, 8, 21, 64, 89, 168, 301, 512, 561, 712, 965, 1344, 1801, 2408, 3165, 4096, 4193, 4488, 4981, 5696, 6585, 7720, 9101, 10752, 12433, 14408, 16677, 19264, 22121, 25320, 28861, 32768, 32961, 33544, 34517, 35904, 37657, 39848, 42477, 45568, 48881, 52680, 56965, 61760, 67017
Offset: 0
Keywords
Examples
If the largest number is 1, then there should be an even number of piles of size 1. Thus, a(1)=8.
Links
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 42-43.
- T. Khovanova and J. Xiong, Nim Fractals, arXiv:1405.594291 [math.CO] (2014), p. 8 and J. Int. Seq. 17 (2014) # 14.7.8.
Programs
-
Mathematica
Table[Length[Select[Flatten[Table[{n, k, j, BitXor[n, k, j]}, {n, 0, a}, {k, 0, a}, {j, 0, a}], 2], #[[4]] <= a &]], {a, 0, 50}]
Formula
If b = floor(log_2(n)) is the number of digits in the binary representation of n and c = n + 1 - 2^b, then a(n) = 2^(3*b) + 6*c^2*2^b + a(c-1).
a(2^n-1) = 2^(3*n).
Comments