cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241523 The number of P-positions in the game of Nim with up to 5 piles, allowing for piles of zero, such that the number of objects in each pile does not exceed n.

Original entry on oeis.org

1, 16, 61, 256, 421, 976, 2101, 4096, 4741, 6736, 10261, 15616, 23221, 33616, 47461, 65536, 68101, 75856, 88981, 107776, 132661, 164176, 202981, 249856, 305701, 371536, 448501, 537856, 640981, 759376, 894661, 1048576, 1058821, 1089616
Offset: 0

Views

Author

Tanya Khovanova and Joshua Xiong, Apr 24 2014

Keywords

Comments

P-positions in the game of Nim are tuples of numbers with a Nim-Sum equal to zero. (0,1,1,0,0) is considered different from (1,0,1,0,0).
a(2^n-1) = 2^(4n).

Examples

			If the largest number is not more than 1, then there should be an even number of piles of size 1. We can choose the first four piles to be either 0 or 1, then the last pile is uniquely defined. Thus, a(1)=16.
		

Crossrefs

Cf. A236305 (3 piles), A241522 (4 piles).
Cf. A241731 (first differences).

Programs

  • Mathematica
    Table[Length[Select[Flatten[Table[{n, k, j, i, BitXor[n, k, j, i]}, {n, 0, a}, {k, 0, a}, {j, 0, a}, {i, 0, a}], 3], #[[5]] <= a &]], {a, 0, 35}]

Formula

If b = floor(log_2(n)) is the number of digits in the binary representation of n and c = n + 1 - 2^b, then a(n) = 2^(4*b) + 10*2^(2*b)*c^2 + 5*c^4.