cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241528 Primes p such that p + 1234567890 is also prime where 1234567890 is the first pandigital number with digits in order.

This page as a plain text file.
%I A241528 #10 Nov 18 2021 13:19:07
%S A241528 17,23,37,59,131,139,157,199,241,311,353,359,397,433,479,547,673,691,
%T A241528 769,877,937,947,953,1051,1091,1097,1181,1297,1301,1409,1451,1471,
%U A241528 1489,1531,1609,1619,1697,1709,1861,1879,1889,1913,1951,2053,2063,2089,2099,2113
%N A241528 Primes p such that p + 1234567890 is also prime where 1234567890 is the first pandigital number with digits in order.
%H A241528 K. D. Bajpai, <a href="/A241528/b241528.txt">Table of n, a(n) for n = 1..10000</a>
%e A241528 17 is prime and appears in the sequence because 17 + 1234567890 = 1234567907, which is also prime.
%e A241528 23 is prime and appears in the sequence because 23 + 1234567890 = 1234567913, which is also prime.
%e A241528 19 is prime but not included in the sequence since 19 + 1234567890 = 1234567909 = (59107)*(20887), which is not prime.
%p A241528 KD := proc() local a,k; k:=ithprime(n);a:=k+1234567890; if isprime(a) then RETURN (k); fi; end: seq(KD(), n=1..1000);
%t A241528 lst={}; Do[p=Prime[n]; If[PrimeQ[p+1234567890], AppendTo[lst,p]],{n,1,1000}]; lst
%t A241528 (* For the b-file *)  c=0; k=Prime[n]; a=k+1234567890; Do[If[PrimeQ[a], c++; Print[c," ",k]],{n,1,10^5}]
%t A241528 Select[Prime[Range[400]],PrimeQ[#+1234567890]&] (* _Harvey P. Dale_, Nov 18 2021 *)
%o A241528 (PARI) s=[]; forprime(p=2, 3000, if(isprime(p+1234567890), s=concat(s, p))); s \\ _Colin Barker_, Apr 25 2014
%Y A241528 Cf. A000040, A002496, A028871, A050289, A056899, A234812, A235640, A240587.
%K A241528 nonn
%O A241528 1,1
%A A241528 _K. D. Bajpai_, Apr 25 2014