This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241537 #8 May 03 2014 12:11:06 %S A241537 1,50653,79507,456533,571787,1295029,1685159,1771561,2248091,2685619, %T A241537 3307949,4173281,7880599,9393931,10218313,10793861,11697083,17373979, %U A241537 18191447,22665187,30664297,47045881,70444997,111284641,146363183,151419437,156590819,192100033 %N A241537 Cubes c such that c + 1234567890 is prime where 1234567890 is the first pandigital number with digits in order. %H A241537 K. D. Bajpai, <a href="/A241537/b241537.txt">Table of n, a(n) for n = 1..10000</a> %e A241537 50653 = 37^3 and appears in the sequence because 50653 + 1234567890 = 1234618543, which is prime. %e A241537 79507 = 43^3 and appears in the sequence because 79507 + 1234567890 = 1234647397, which is prime. %e A241537 64000 = 40^3 but not included in the sequence since 64000 + 1234567890 = 1234631890 = (2)*(5)*(29389)*(4201), which is not prime. %p A241537 KD := proc() local a,c; c:=n^3;a:=c+1234567890; if isprime(a) then RETURN (c); fi; end: seq(KD(), n=1..1000); %t A241537 lst={}; Do[c=n^3; If[PrimeQ[c+1234567890], AppendTo[lst,c]], {n,1,1000}]; lst %t A241537 (*For the b-file*) m=0; c=n^3; a=c+1234567890; Do[If[PrimeQ[a],m++; Print[m," ",c]], {n,1,4*10^5}] %o A241537 (PARI) s=[]; for(n=1, 1000, c=n^3; if(isprime(c+1234567890), s=concat(s, c))); s \\ _Colin Barker_, Apr 25 2014 %Y A241537 Cf. A000040, A002496, A028871, A050289, A056899, A234812, A235640, A240587. %K A241537 nonn %O A241537 1,2 %A A241537 _K. D. Bajpai_, Apr 25 2014