This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241538 #13 May 03 2014 12:12:55 %S A241538 1,169,1681,6889,8281,11881,24649,27889,41209,57121,58081,67081,80089, %T A241538 101761,124609,175561,185761,201601,212521,332929,380689,413449, %U A241538 461041,508369,534361,609961,625681,654481,683929,693889,822649,829921,833569,1014049,1018081 %N A241538 Squares s such that s + 1234567890 is prime. %C A241538 1234567890 is the first pandigital number with digits in order. %H A241538 K. D. Bajpai, <a href="/A241538/b241538.txt">Table of n, a(n) for n = 1..10000</a> %e A241538 169 = 13^2 and appears in the sequence because 169 + 1234567890 = 1234568059, which is prime. %e A241538 1681 = 41^2 and appears in the sequence because 1681 + 1234567890 = 1234569571, which is prime. %e A241538 625 = 25^2 but is not included in the sequence since 625 + 1234567890 = 1234568515 = (5)*(246913703), which is not prime. %p A241538 KD := proc() local a,s; s:=n^2;a:=s+1234567890; if isprime(a) then RETURN (s); fi; end: seq(KD(), n=1..2000); %t A241538 A241538 = {}; Do[s = n^2; If[PrimeQ[s + 1234567890], AppendTo[A241538, s]], {n, 2000}]; A241538 %t A241538 (* For the b-file *) c = 0; s = n^2; a = s + 1234567890; Do[If[PrimeQ[a], c++; Print[c, " ", s]], {n, 4*10^5}] (* Bajpai *) %t A241538 Select[Range[1000]^2, PrimeQ[# + 1234567890] &] (* _Alonso del Arte_, Apr 25 2014 *) %Y A241538 Cf. A000040, A002496, A028871, A050289, A056899, A234812, A235640, A240587. %K A241538 nonn,less %O A241538 1,2 %A A241538 _K. D. Bajpai_, Apr 25 2014