A241550 Number of partitions p of n such that (number of numbers of the form 5k + 1 in p) is a part of p.
0, 1, 1, 2, 3, 5, 7, 10, 14, 21, 28, 39, 51, 70, 92, 122, 158, 206, 265, 343, 432, 554, 695, 879, 1098, 1373, 1703, 2115, 2607, 3218, 3937, 4831, 5882, 7175, 8699, 10541, 12733, 15358, 18464, 22184, 26548, 31774, 37891, 45166, 53681, 63743, 75529, 89381
Offset: 0
Examples
a(6) counts these 7 partitions: 51, 411, 321, 3111, 2211, 21111, 111111.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 5], k] Table[Count[f[n], p_ /; MemberQ[p, s[0, p]]], {n, 0, z}] (* A241549 *) Table[Count[f[n], p_ /; MemberQ[p, s[1, p]]], {n, 0, z}] (* A241550 *) Table[Count[f[n], p_ /; MemberQ[p, s[2, p]]], {n, 0, z}] (* A241551 *) Table[Count[f[n], p_ /; MemberQ[p, s[3, p]]], {n, 0, z}] (* A241552 *) Table[Count[f[n], p_ /; MemberQ[p, s[4, p]]], {n, 0, z}] (* A241553 *)
Comments