A241552 Number of partitions p of n such that (number of numbers of the form 5k + 3 in p) is a part of p.
0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 12, 17, 23, 34, 47, 64, 87, 115, 154, 204, 266, 346, 444, 573, 731, 933, 1174, 1479, 1855, 2320, 2884, 3578, 4411, 5443, 6678, 8185, 9977, 12157, 14753, 17886, 21608, 26058, 31326, 37631, 45066, 53911, 64300, 76609, 91061
Offset: 0
Examples
a(6) counts these 2 partitions: 321, 3111.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 5], k] Table[Count[f[n], p_ /; MemberQ[p, s[0, p]]], {n, 0, z}] (* A241549 *) Table[Count[f[n], p_ /; MemberQ[p, s[1, p]]], {n, 0, z}] (* A241550 *) Table[Count[f[n], p_ /; MemberQ[p, s[2, p]]], {n, 0, z}] (* A241551 *) Table[Count[f[n], p_ /; MemberQ[p, s[3, p]]], {n, 0, z}] (* A241552 *) Table[Count[f[n], p_ /; MemberQ[p, s[4, p]]], {n, 0, z}] (* A241553 *)
Comments