A241553 Number of partitions p of n such that (number of numbers of the form 5k + 4 in p) is a part of p.
0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 12, 17, 25, 33, 49, 65, 90, 119, 159, 210, 277, 358, 466, 593, 766, 968, 1231, 1548, 1942, 2427, 3026, 3747, 4642, 5704, 7022, 8587, 10498, 12775, 15519, 18799, 22730, 27394, 32981, 39558, 47426, 56676, 67650, 80564, 95781
Offset: 0
Examples
a(6) counts this single partition: 411.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 5], k] Table[Count[f[n], p_ /; MemberQ[p, s[0, p]]], {n, 0, z}] (* A241549 *) Table[Count[f[n], p_ /; MemberQ[p, s[1, p]]], {n, 0, z}] (* A241550 *) Table[Count[f[n], p_ /; MemberQ[p, s[2, p]]], {n, 0, z}] (* A241551 *) Table[Count[f[n], p_ /; MemberQ[p, s[3, p]]], {n, 0, z}] (* A241552 *) Table[Count[f[n], p_ /; MemberQ[p, s[4, p]]], {n, 0, z}] (* A241553 *)
Comments