A241568 a(n) = |{0 < k < prime(n)/2: k is not only a quadratic nonresidue modulo prime(n) but also a Fibonacci number}|.
0, 0, 1, 1, 1, 2, 2, 3, 1, 3, 2, 4, 2, 4, 2, 5, 3, 3, 5, 3, 4, 2, 5, 2, 4, 4, 3, 4, 3, 5, 3, 2, 5, 4, 7, 2, 6, 5, 4, 4, 5, 4, 3, 4, 7, 4, 4, 4, 5, 6, 4, 3, 5, 4, 3, 3, 3, 3, 3, 5, 6, 7, 8, 2, 5, 7, 6, 3, 5, 7, 5, 3, 4, 4, 6, 3, 6, 7, 4, 3
Offset: 1
Keywords
Examples
a(3) = 1 since F(3) = 2 is a quadratic nonresidue modulo prime(3) = 5, where F(n) denotes the n-th Fibonacci number. a(4) = 1 since F(4) = 3 is a quadratic nonresidue modulo prime(4) = 7. a(5) = 1 since F(3) = 2 is a quadratic nonresidue modulo prime(5) = 11. a(9) = 1 since F(5) = 5 is a quadratic nonresidue modulo prime(9) = 23.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
Crossrefs
Programs
-
Mathematica
f[k_]:=Fibonacci[k] Do[m=0;Do[If[f[k]>Prime[n]/2,Goto[aa]];If[JacobiSymbol[f[k],Prime[n]]==-1,m=m+1];Continue,{k,2,(Prime[n]+1)/2}]; Label[aa];Print[n," ",m];Continue,{n,1,80}]
Comments